

Parameter identifiability and model Mathematica selection for PDE models of cell invasion

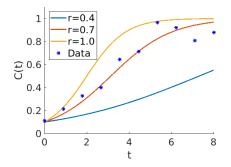
YUE LIU Supervisors: Ruth Baker, Philip Maini Mathematical Institute University of Oxford

European Conference on Mathematical and Theoretical Biology Heidelberg, 2022

Oxford Mathematics

Example: what's the best value of *r*?

$$\frac{\partial C}{\partial t} = rC(1-C)$$



- Structural identifiability: can the true parameter be recovered, given theoretically *infinite* amount of data? (well-defined, objective property of the model itself)
- Practical identifiability: can the true parameter be recovered, given a *finite, realistic* amount of data? (subjective, depending on both model and available data)

- Structural identifiability: can the true parameter be recovered, given theoretically *infinite* amount of data? (well-defined, objective property of the model itself)
- Practical identifiability: can the true parameter be recovered, given a *finite, realistic* amount of data? (subjective, depending on both model and available data)

- 1. Ability to reproduce data (goodness of fit)
- 2. Simplicity (fewer free parameters)
- 3. Parameter identifiability

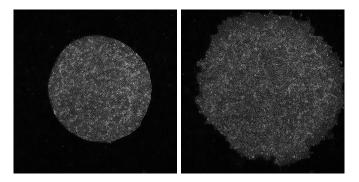
- 1. Ability to reproduce data (goodness of fit)
- 2. Simplicity (fewer free parameters)
- 3. Parameter identifiability

- 1. Ability to reproduce data (goodness of fit)
- 2. Simplicity (fewer free parameters)
- 3. Parameter identifiability

- 1. Ability to reproduce data (goodness of fit)
- 2. Simplicity (fewer free parameters)
- 3. Parameter identifiability

$$\begin{aligned} AIC &= -2\log(p(C_{\text{data}}|\boldsymbol{\theta})) + 2m & m = \# \text{free params} \\ BIC &= -2\log(p(C_{\text{data}}|\boldsymbol{\theta})) + \log(N)m & N = \# \text{data pts} \\ \text{(lower = better)} & p(C_{\text{data}}|\boldsymbol{\theta}) = \text{likelihood} \end{aligned}$$

Barrier assay experiments



8 experiments, $n_t = 77$ images, $\Delta t = 20$ min, $n_x = n_y = 150$

Spatially-discretized cell density from 2 experiments with different initial conditions (link if movie doesn't work)

Are the models practically identifiable?

- How much data do we need to make the models identifiable?
- Which model is the "best"?
- Are parameter estimates consistent across experimental replicates?
- ▶ What's a computationally efficient method to answer these?

- Are the models practically identifiable?
- How much data do we need to make the models identifiable?
- Which model is the "best"?
- Are parameter estimates consistent across experimental replicates?
- ▶ What's a computationally efficient method to answer these?

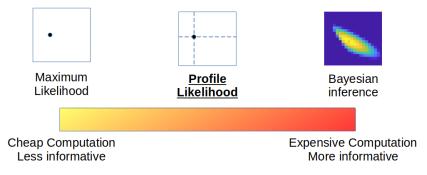
- Are the models practically identifiable?
- How much data do we need to make the models identifiable?
- Which model is the "best"?
- Are parameter estimates consistent across experimental replicates?
- ▶ What's a computationally efficient method to answer these?

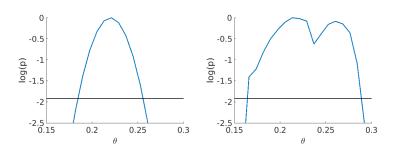
- Are the models practically identifiable?
- How much data do we need to make the models identifiable?
- Which model is the "best"?
- Are parameter estimates consistent across experimental replicates?
- ▶ What's a computationally efficient method to answer these?

- Are the models practically identifiable?
- How much data do we need to make the models identifiable?
- Which model is the "best"?
- Are parameter estimates consistent across experimental replicates?
- What's a computationally efficient method to answer these?

4 candidate models in the competition: C = C(x, y, t)

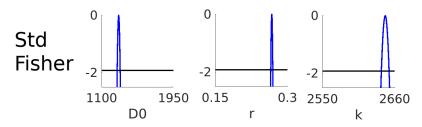
Std. Fisher
$$(m = 3)$$
: $\frac{\partial C}{\partial t} = D_0 \nabla^2 C + rC(1 - C/K)$
Porous Fisher $(m = 4)$: $\frac{\partial C}{\partial t} = \nabla \cdot (D_0(C/K)^{\eta} \nabla C) + rC(1 - C/K)$
Richards $(m = 4)$: $\frac{\partial C}{\partial t} = D_0 \nabla^2 C + rC(1 - (C/K)^{\gamma})$
Gen. Fisher $(m = 5)$: $\frac{\partial C}{\partial t} = D_0 \nabla^2 C + rC^{\alpha}(1 - C/K)^{\beta}$





Line at log(p) = -1.92: cutoff for 95% confidence interval Left: identifiable case: smooth, narrow, ~ parabolic. Right: non-identifiable case: broader, flat top, multimodal, jagged

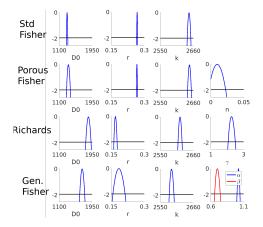
Yes (but only because we have high resolution data)



To emphasize: these are real, not synthetic, data

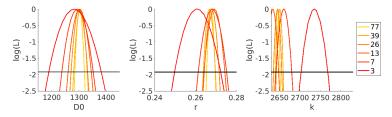
Are the models practically identifiable?

Yes (but only because we have high resolution data)



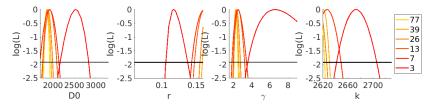
To emphasize: these are real, not synthetic, data

Repeat profile likelihood calculations with temporally down-sampled data (lower n_t /higher Δt)



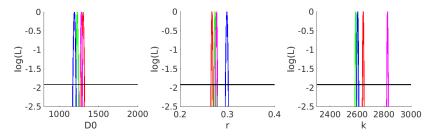
The Standard Fisher model remains identifiable even when we down-sample the data to $n_t = 3$

Repeat profile likelihood calculations with temporally down-sampled data (lower n_t /higher Δt)



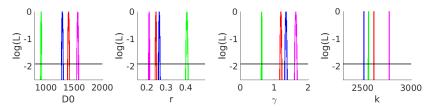
The Richards model cease to be identifiable when the data resolution is sufficiently low

Depends on the model.



Std. Fisher (shown), and Porous Fisher: mostly consistent

Depends on the model.



Richards (shown), Generalised Fisher: much less consistent

- The 4 models (Std Fisher, Porous Fisher, Richards, Gen Fisher) are all identifiable given high resolution data
- Richards and Gen Fisher becomes non-identifiable if data resolution is low
- These two models also show inconsistencies across experiment replicates even if they appears identifiable
- Inconsistency reflects sensitivity of the model to process noise, a symptom of non-identifiability
- Experimental initial conditions can have a major impact on parameter identifiability
- Computational cost of profile likelihood compares favourably to MCMC, while still being informative

- The 4 models (Std Fisher, Porous Fisher, Richards, Gen Fisher) are all identifiable given high resolution data
- Richards and Gen Fisher becomes non-identifiable if data resolution is low
- These two models also show inconsistencies across experiment replicates even if they appears identifiable
- Inconsistency reflects sensitivity of the model to process noise, a symptom of non-identifiability
- Experimental initial conditions can have a major impact on parameter identifiability
- Computational cost of profile likelihood compares favourably to MCMC, while still being informative

- The 4 models (Std Fisher, Porous Fisher, Richards, Gen Fisher) are all identifiable given high resolution data
- Richards and Gen Fisher becomes non-identifiable if data resolution is low
- These two models also show inconsistencies across experiment replicates even if they appears identifiable
- Inconsistency reflects sensitivity of the model to process noise, a symptom of non-identifiability
- Experimental initial conditions can have a major impact on parameter identifiability
- Computational cost of profile likelihood compares favourably to MCMC, while still being informative

- The 4 models (Std Fisher, Porous Fisher, Richards, Gen Fisher) are all identifiable given high resolution data
- Richards and Gen Fisher becomes non-identifiable if data resolution is low
- These two models also show inconsistencies across experiment replicates even if they appears identifiable
- Inconsistency reflects sensitivity of the model to process noise, a symptom of non-identifiability
- Experimental initial conditions can have a major impact on parameter identifiability
- Computational cost of profile likelihood compares favourably to MCMC, while still being informative

- The 4 models (Std Fisher, Porous Fisher, Richards, Gen Fisher) are all identifiable given high resolution data
- Richards and Gen Fisher becomes non-identifiable if data resolution is low
- These two models also show inconsistencies across experiment replicates even if they appears identifiable
- Inconsistency reflects sensitivity of the model to process noise, a symptom of non-identifiability
- Experimental initial conditions can have a major impact on parameter identifiability
- Computational cost of profile likelihood compares favourably to MCMC, while still being informative

Acknowledgement

Prof. Ruth Baker Oxford (supervisor)

Prof. Philip Maini Oxford (supervisor)

Kevin Suh Princeton (experiments)

Prof. Daniel Cohen Princeton (Kevin's supervisor)

 θ : model parameters, θ_{-i} : parameters except θ_i

Maximum likelihood estimate (MLE):

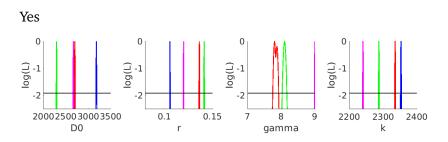
$$oldsymbol{ heta}^* = \operatorname*{argsup}_{oldsymbol{ heta}} p(oldsymbol{ heta} | C_{\mathrm{data}})$$

Bayesian inference:

$$p(\boldsymbol{\theta}|C_{\text{data}}) \sim p(C_{\text{data}}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Profile likelihood:

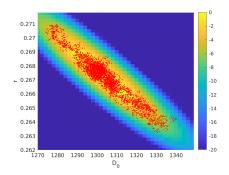
$$p(\theta_i = \theta_i' | C_{\text{data}}) \sim \max_{\boldsymbol{\theta}_{-i}} p(C_{\text{data}} | \boldsymbol{\theta}_{-i}, \theta_i = \theta_i')$$



Triangular initial condition makes the parameter less consistent. Parameter estimates in Richards and Gen Fisher models can be far from the estimates with circular initial conditions

Result: Does profile likelihood agree with MCMC?

Yes



The samples generated from Metropolis-Hastings MCMC closely matches the contours of the two-parameter profile likelihood function

We measure computational cost by the number of model simulations required to compute the profile likelihood curves (all other costs negligible)

Total cost \approx # free parameters * # points per curve (we chose 10) * average # model simulations needed for optimization

- ▶ 3 f.p. (Standard Fisher): 3 * 10 * (40 60) \approx 1200 1800
- ▶ 4 f.p. (Porous Fisher, Richards): 4 * 10 * (60 100)
 ≈ 2400 4000

▶ 5 f.p. (Gen. Fisher): $5 * 10 * (140 - 250 \approx 7000 - 12500$ Optimization may fail with off-the-shelf methods with ≥ 5 f.p.