

Inference and parameter identifiability for biological pattern formation

Yue Liu

Purdue University

Case Western Reserve Seminar

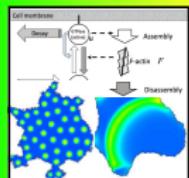
Jan.15.2026

`liu4194@purdue.edu`

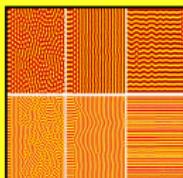
`https://liuyue002.github.io/`

I: My journey in mathematical biology

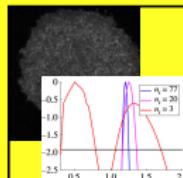
Pattern formation in models of cell polarisation



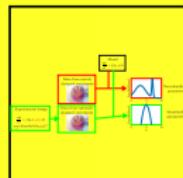
Pattern formation behind a wave of competency



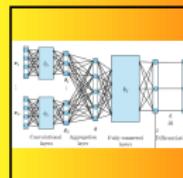
Parameter identifiability for PDE models of cell invasion



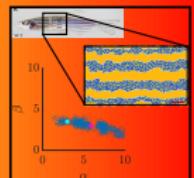
Optimal experiment design



Control of agent-based models with ML



Bayesian inference in ABM of zebrafish patterns via TDA



Conceptual PDE modelling

Data-driven PDE modelling

Data-driven approaches for agent-based models

Overarching theme:

- Biological patterns
- PDE models → Agent-based models (ABMs)
- Conceptual modelling → Data-driven approaches

I: My research program

Past:

- PDE models in signalling proteins regulating cell motility
- Diffusion-driven (Turing) instability in pattern formation
- Inference and identifiability of PDE models

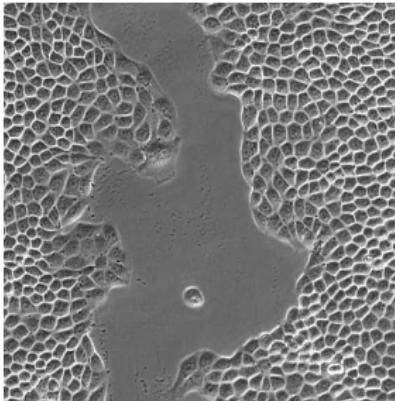
Current:

- Bayesian inference for ABM of cell-cell interaction and pattern formation with topological data analysis
- Machine learning-based dynamics discovery for cell movement during development
- Patterns in network models of opinion dynamics (undergrad mentorship)

Future:

- Combining PDE and ABM to build multi-scale model of immune response and wound healing
- Optimal therapy design with machine learning and control theory

I: Biological patterns are ubiquitous and fascinating



Epithelial Cells: Kozysrka et al, *Science*, 2022; Starlings: Baxter, *Wikipedia*, 2008;

Zebrafish: Azul, *Wikipedia*, 2005; Fern: Auer, 1853.

I: Turing's PDE models

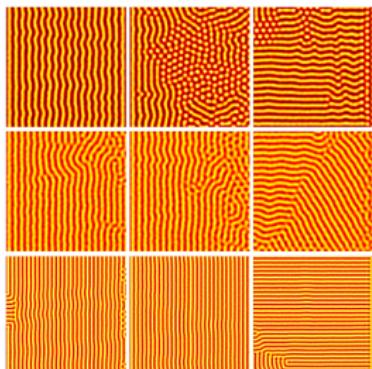
Diffusion-driven instability was proposed by Turing (1952) as a possible driving mechanism behind many biological patterns

$$\frac{\partial u(x, t)}{\partial t} = \nabla \cdot (D_u \nabla u) + f(u, v),$$

$$\frac{\partial v(x, t)}{\partial t} = \varepsilon^2 \nabla \cdot (D_v \nabla v) + g(u, v), \quad x \in \Omega \subseteq \mathbb{R}^n, \quad t > 0$$

$$u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x, 0), \quad \partial_n u = \partial_n v = 0 \text{ on } \partial\Omega$$

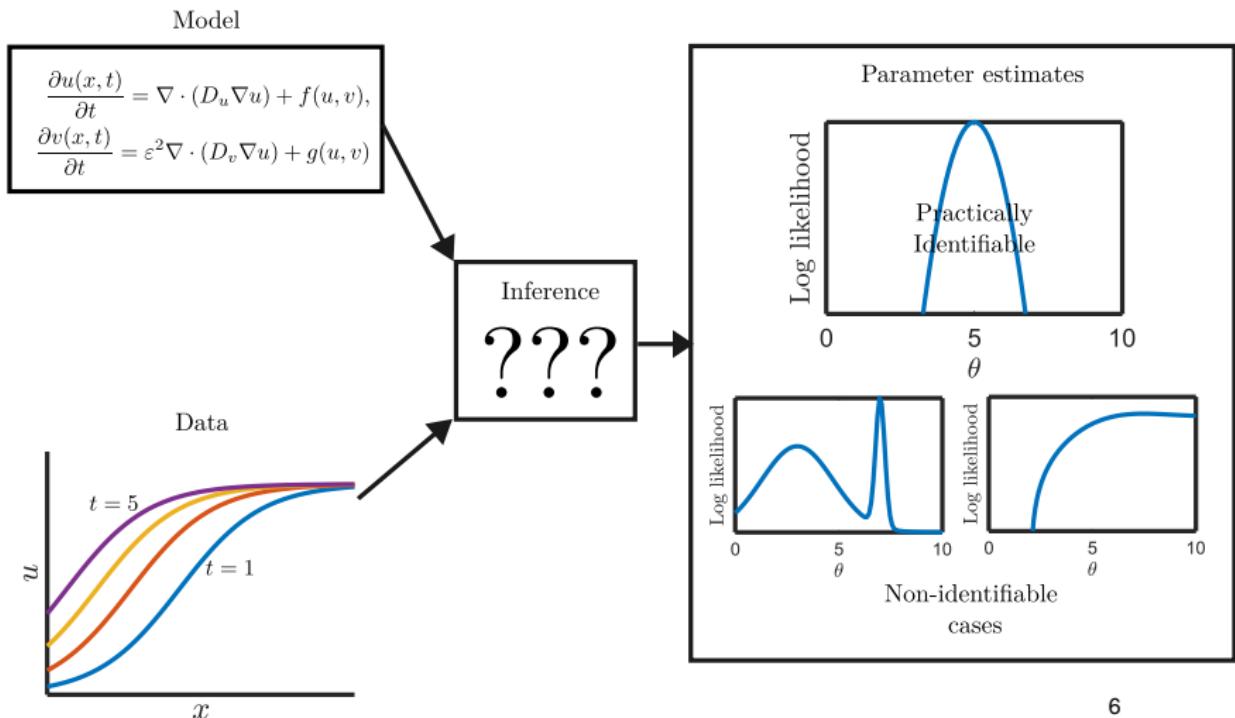
Many fascinating properties, but little evidence in biology



Liu, Maini, Baker, 2022. Control of diffusion-driven pattern formation behind a wave of competency. *Physica D* 438

I: Inference and Parameter identifiability

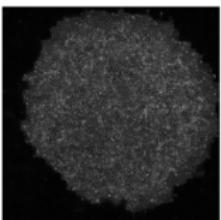
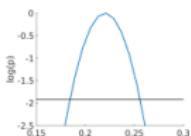
(Practical) Parameter identifiability: the ability to accurately infer values of model parameters with given data



I: Data-driven PDE models of patterning

- How to select a model?
- What factors impact parameter identifiability?
- How to optimally design experiment to enhance parameter identifiability?

Data



$D_0=1100, r=0.3, K=2600$

Parameter estimates
and
profile likelihood

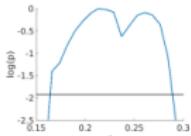
$$\frac{\partial C}{\partial t} = D_0 \nabla^2 C + r C (1 - C/K)$$

Model 1

$$\frac{\partial C}{\partial t} = \nabla \cdot (D_0 C^\alpha \nabla C) + r C^\alpha (1 - (C/K)^\gamma)^\beta$$

Model 2

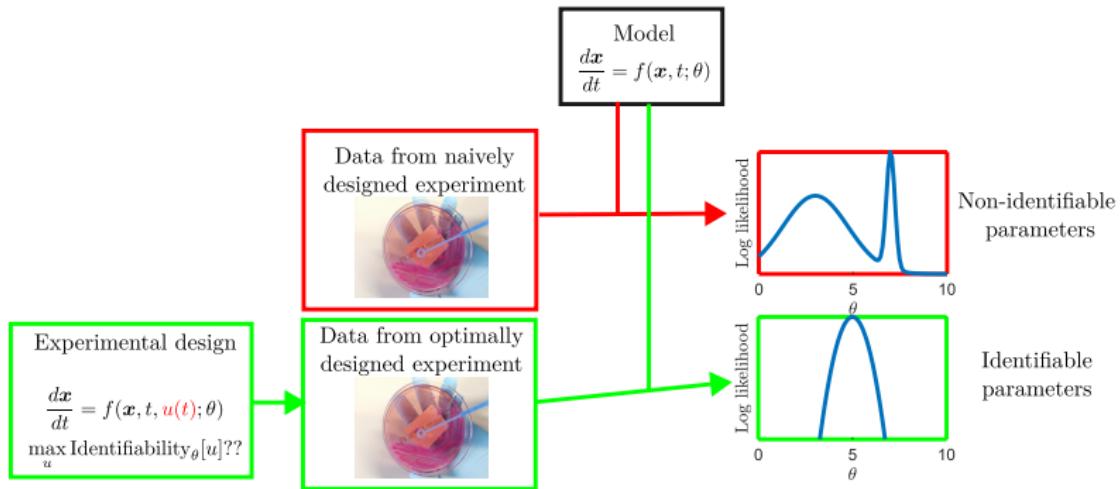
???



$D_0=1100, r=0.3, K=2600,$
 $\alpha=1.1, \beta=1.3, \gamma=3.2, \eta=0.1$

Liu, Suh, Maini, Cohen, Baker, 2024. Parameter identifiability and model selection for partial differential equation models of cell invasion. *J R Soc Interface* 21(212)

I: Experiment design



Liu, Maini, Baker, 2025. Optimal experiment design for practical parameter identifiability and model discrimination. arXiv:2506.11311

I: Pattern formation on zebrafish skin

zebrafish

About 1 310,000 results (0.07 sec)

SUBJECT REVIEWS | MAY 01 2008

Zebrafish as a Cancer Model FREE

Harma Feitsma; Edwin Cuppen

 Check for updates

 + Author & Article Information

Mol Cancer Res (2008) 6 (5): 685–694.

The zebrafish: a new model organism for integrative physiology

Josephine P. Briggs

01 JAN 2002 // <https://doi.org/10.1152/ajpregu.00589.2001>

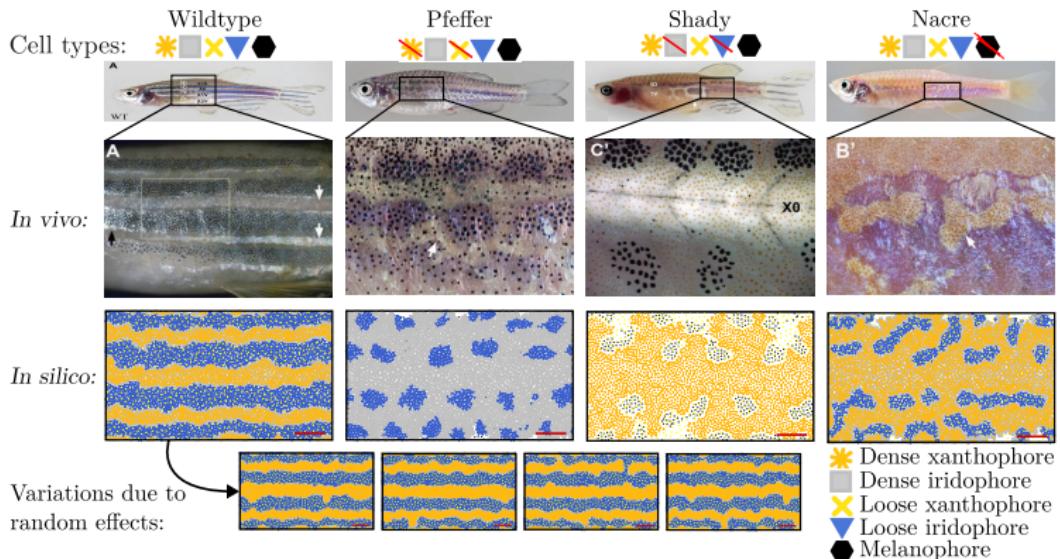
Studies of Turing pattern formation in zebrafish skin

Shigeru Kondo , Masakatsu Watanabe and Seita Miyazawa

Published: 08 November 2021 | <https://doi.org/10.1098/rsta.2020.0274>

Zebrafish photo: Azul, *Wikipedia*, 2005

I: The zebrafish ABM

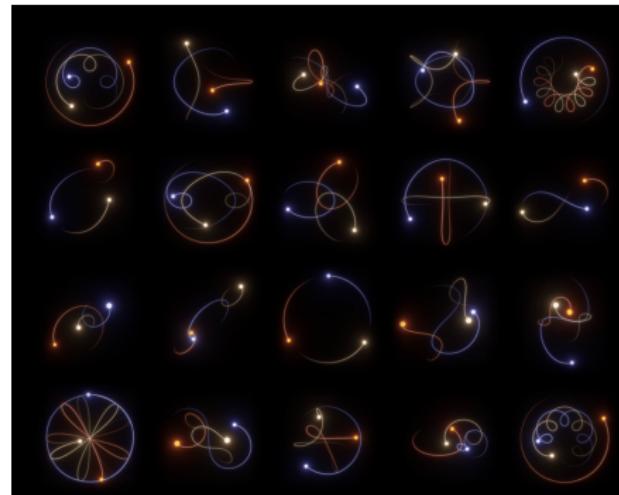


Fish and *in vivo* pictures: Frohnhöfer et al, *Development*, 2013. Model by Volkening & Sandstede, 2018

I: What are agent-based models (ABMs)?

ABM: A collection of autonomous agents, and rules governing their interactions.

Example: Newtonian n -body problem



$$\frac{d^2x_i}{dt^2} = \sum_{j \neq i} -G \frac{m_i m_j}{|x_i - x_j|^2} \hat{x_i - x_j}$$

I: The zebrafish model is more complex

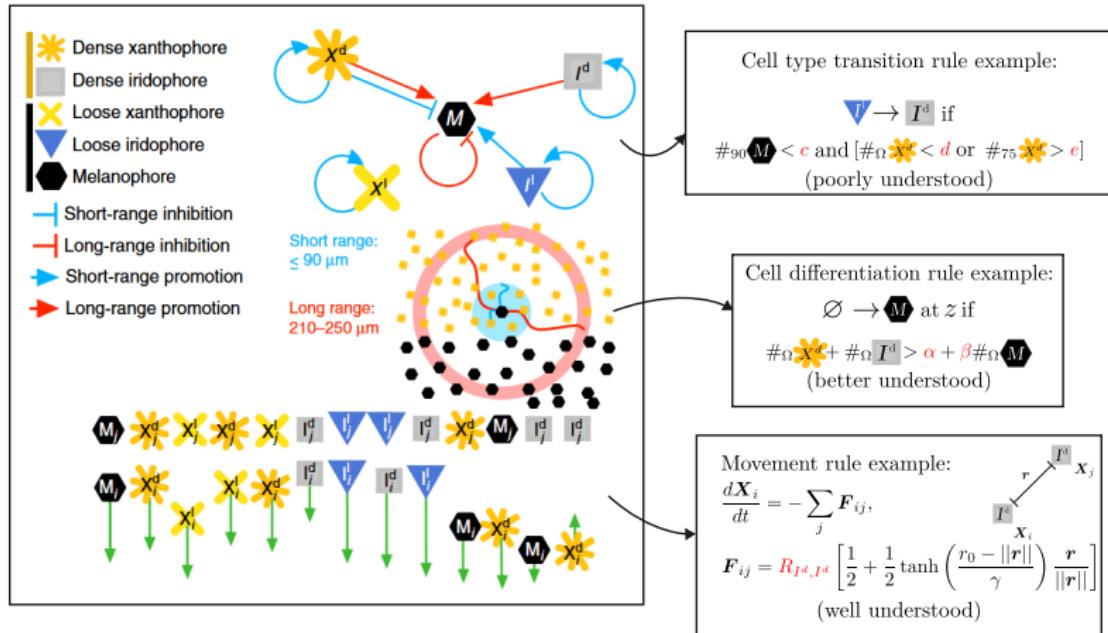
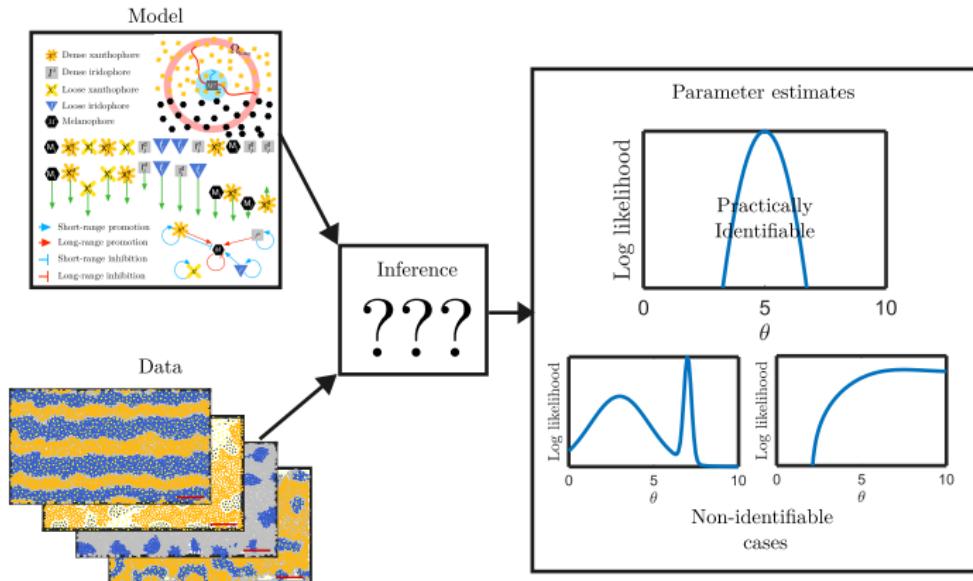


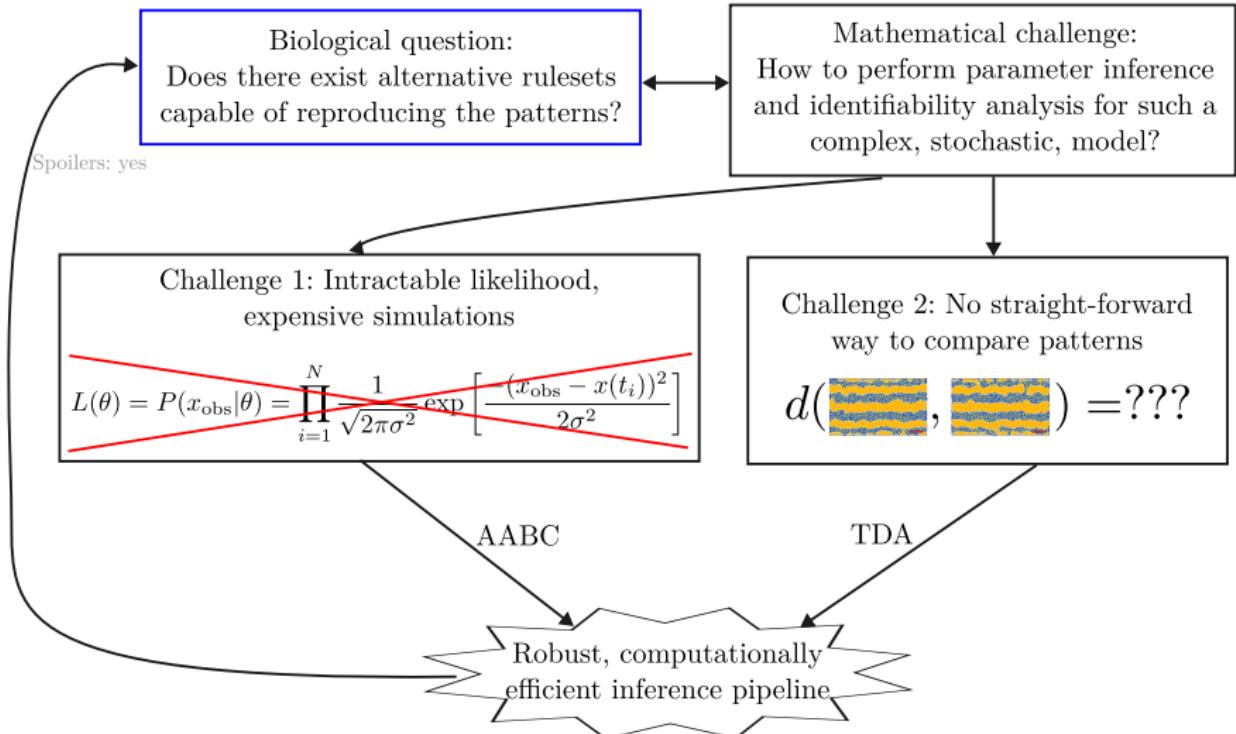
Figure adapted from Volkening & Sandstede, *Nat. Comm.*, 2018

I: Parameter identifiability

Practical parameter identifiability: a quantification of uncertainty in parameter estimates with respect to data quality and quantity



I: The central aim

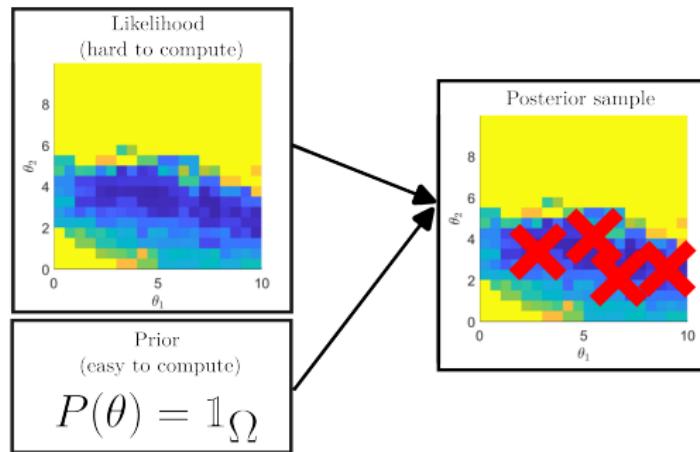


- I Background and motivation
- II Bayesian Inference
- III Topological data analysis
- IV Inference result for the zebrafish model
- V Future work

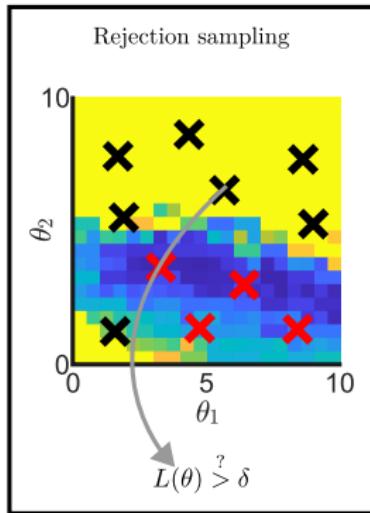
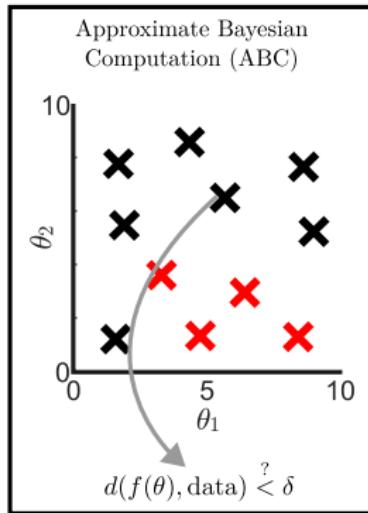
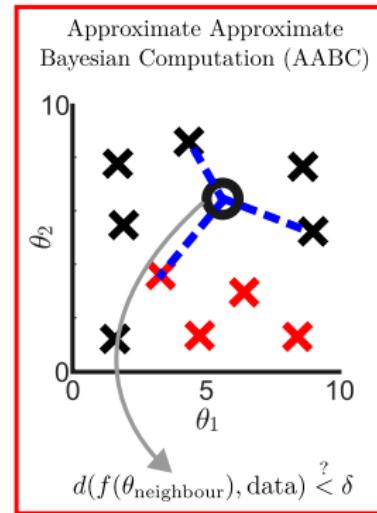
II: Bayesian parameter inference

$$\underbrace{P(\theta|x_{\text{data}})}_{\text{posterior}} \propto \underbrace{P(x_{\text{data}}|\theta)}_{\text{likelihood}} \underbrace{P(\theta)}_{\text{prior}}$$

Goal: Obtain the *posterior distribution* of parameter values by (approximately) sampling from it



II: From rejection sampling to AABC



Higher accuracy
More expensive

Lower accuracy
Computationally cheaper

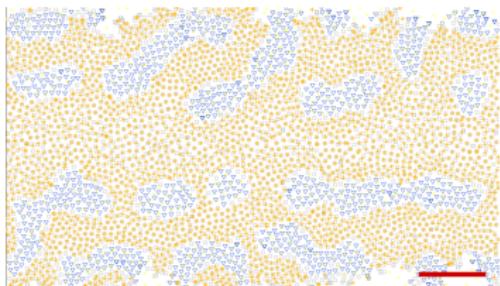
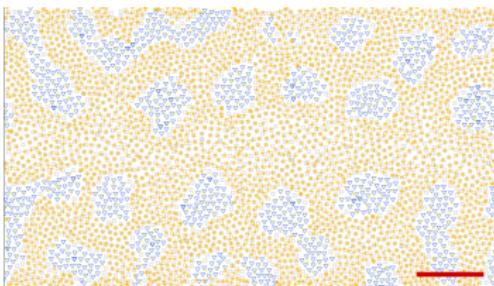
Problem: how to define $d(\cdot, \cdot)$ and choose appropriate δ ?

Talk outline

- I** Background and motivation
- II** Bayesian Inference
- III** Topological data analysis
- IV** Inference result for the zebrafish model
- V** Future work

III: How to compare patterns?

Pixel-wise comparison does not respect the qualitative “essence” of patterns

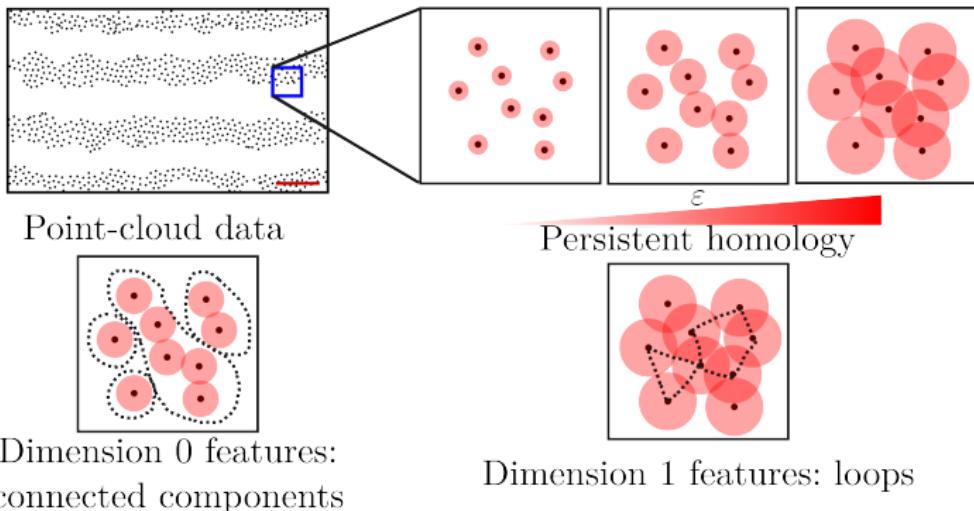


Common approaches for comparing spatial data:

- Pair correlation functions
- Summary statistics
- **Topological data analysis**: good for summarising topological/geometric information

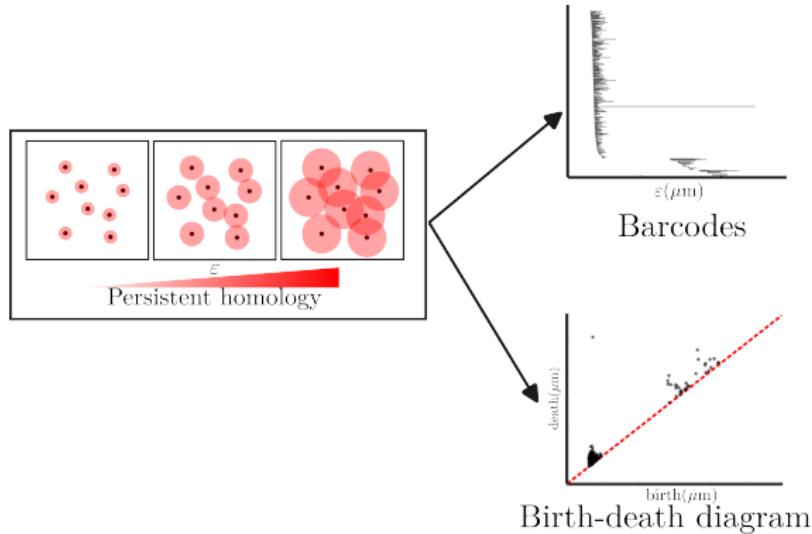
III: Persistent homology

Step 1: Compute persistent homology
(we use the Vietoris–Rips filtration)



III: Persistent homology

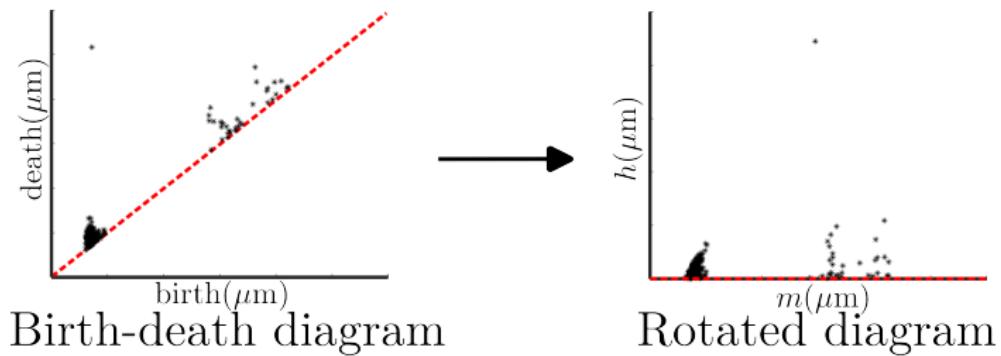
Step 2: Pick a dimension (usually 0 or 1), compute barcodes and birth-death diagrams



But directly comparing barcodes from different patterns is difficult
→ persistence landscape

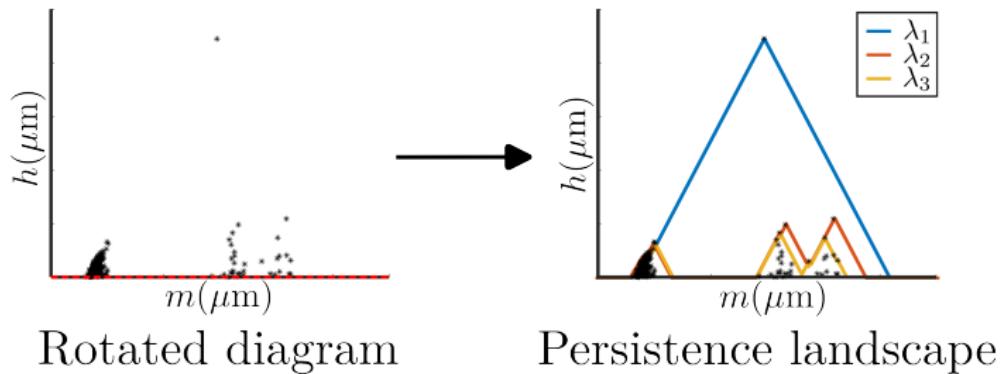
III: Persistence landscape

Step 3a: Rotate birth-death diagrams by $\pi/4$



III: Persistence landscape

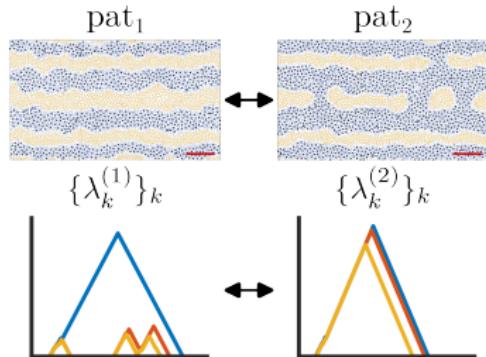
Step 3b: Draw triangular “mountains”



Persistence landscape is the collection of envelopes defined by the “mountains”, $\{\lambda_k\}_{k=1}^{\infty}$

III: Metric for comparing patterns

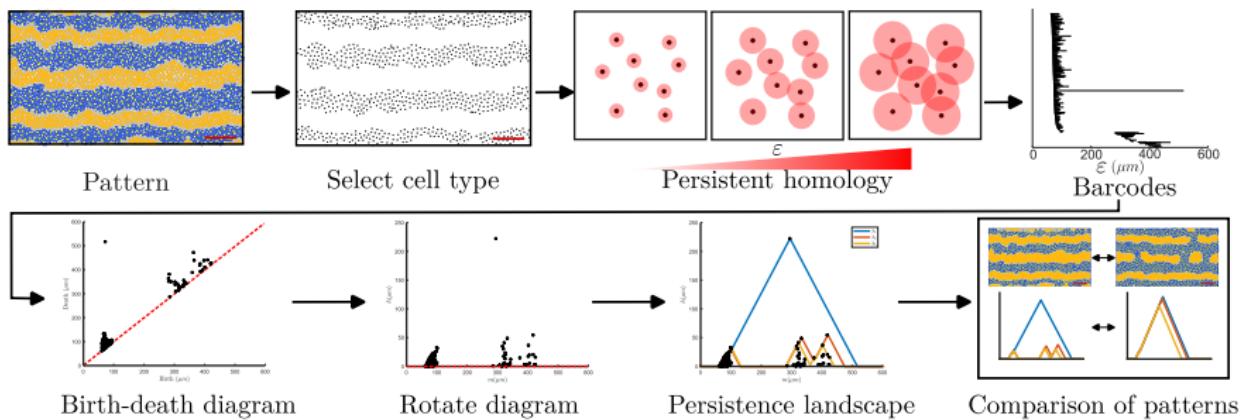
Persistence landscape offers a robust way to compare spatial data (Bubenik 2015, 2020), and consequently define score function for parameter values



$$d_{\text{land}}(\text{pat}_1, \text{pat}_2)^2 = \sum_{k=1}^{\infty} d_{L^2} \left(\lambda_k^{(1)}, \lambda_k^{(2)} \right)^2$$

$D(\theta) = d_{\text{land}}(\text{pat}(\theta), \text{pat}_{\text{data}})$, pat_{data} is synthetic

III: The TDA pipeline

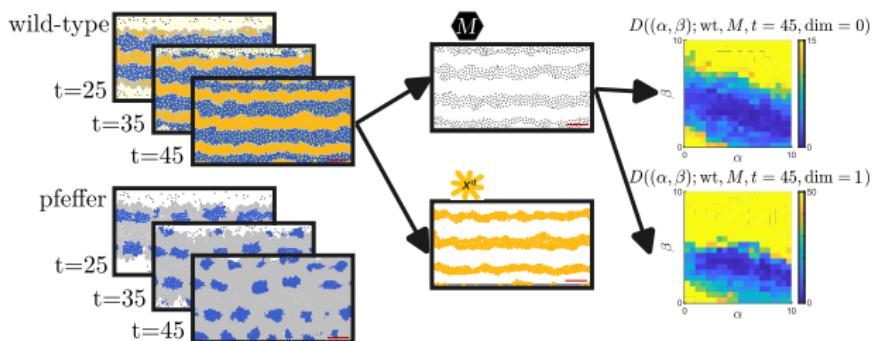


III: Choices in building a score function

Any choice of

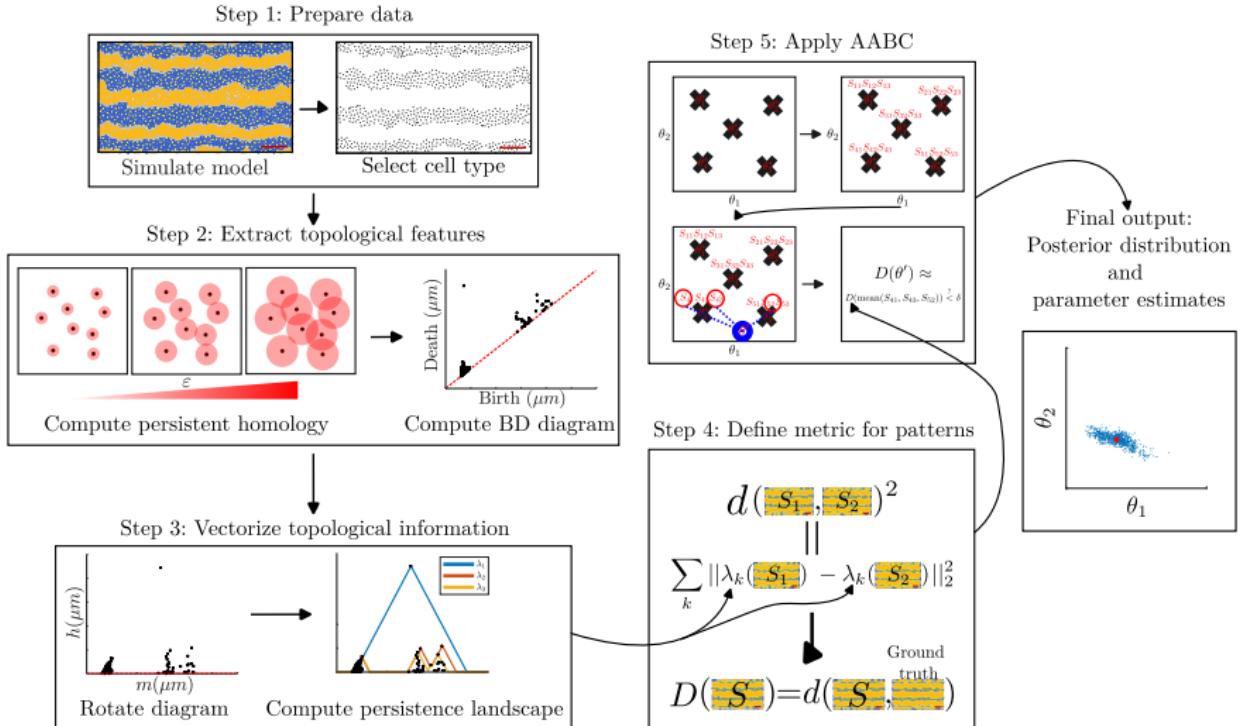
- Fish type (**wild-type**, *pfeffer*, *nacre*, *shady*),
- Cell type (**M** , X^d , X^l , I^d , I^l),
- time $t = 1, \dots, 44, 45$,
- Topological dimension (0 or **1**),

yields a distinct distance function $D((\alpha, \beta); \text{fish, cell, } t, \text{dim})$:



We can either use one such D individually, or combine them somehow (more on this later)

III: The entire pipeline

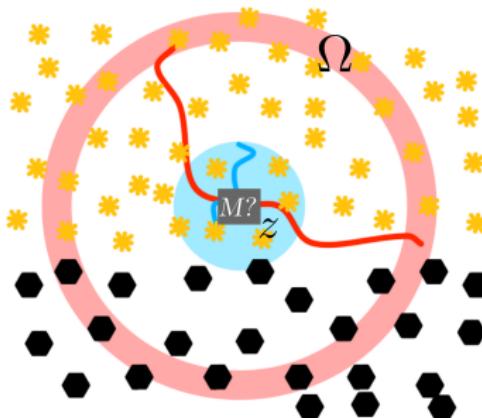


- I** Background and motivation
- II** Bayesian Inference
- III** Topological data analysis
- IV** Inference result for the zebrafish model
- V** Future work

IV: Demonstration of methods on well-understood parameters

A new M at random location z may appear if

$$\#\Omega^{x^d} + \#\Omega^{l^d} > \alpha + \beta \#\Omega^M$$



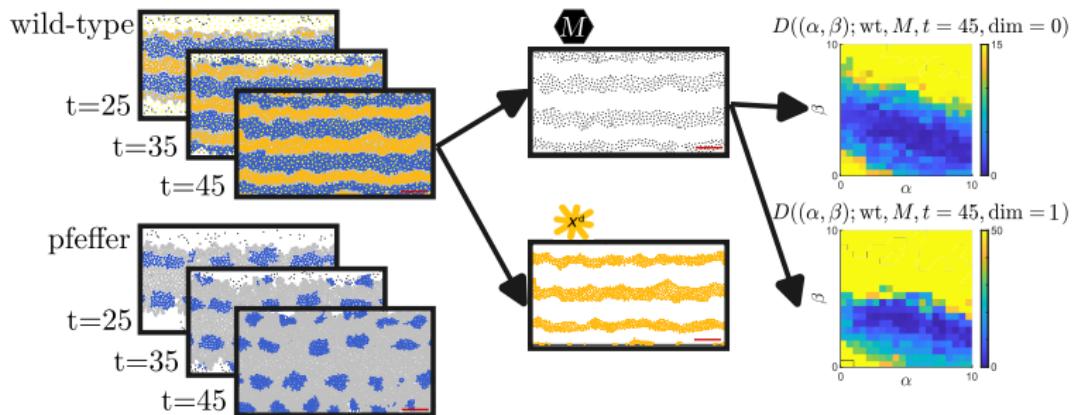
Parameters: α, β

IV: Recall the choices

Any choice of

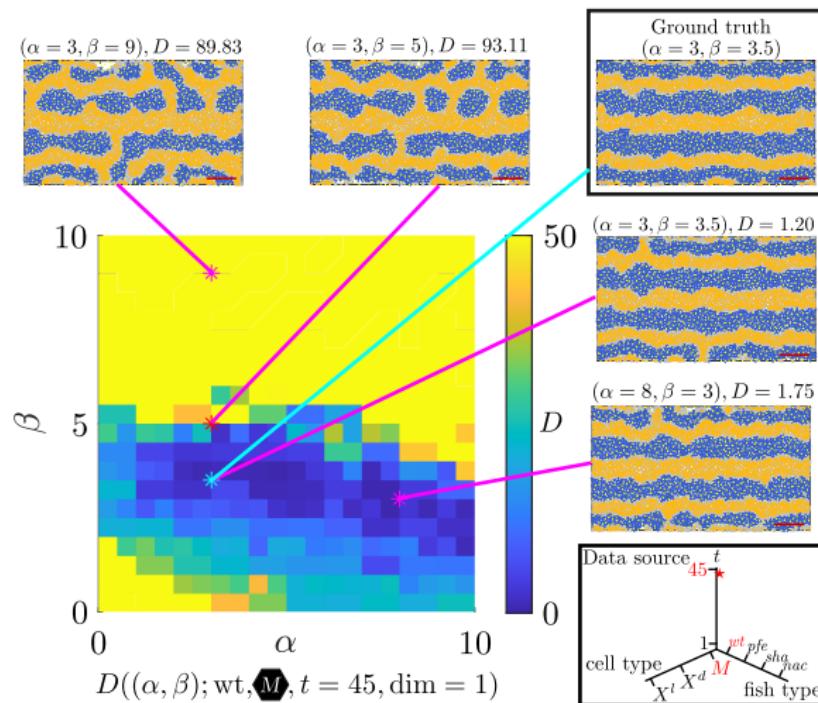
- Fish type (**wild-type**, *pfeffer*, *nacre*, *shady*),
- Cell type (**M** , X^d , X^l , I^d , I^l),
- time $t = 1, \dots, 44, 45$,
- Topological dimension (0 or **1**),

yields a distinct distance function $D((\alpha, \beta); \text{fish, cell, } t, \text{dim})$:



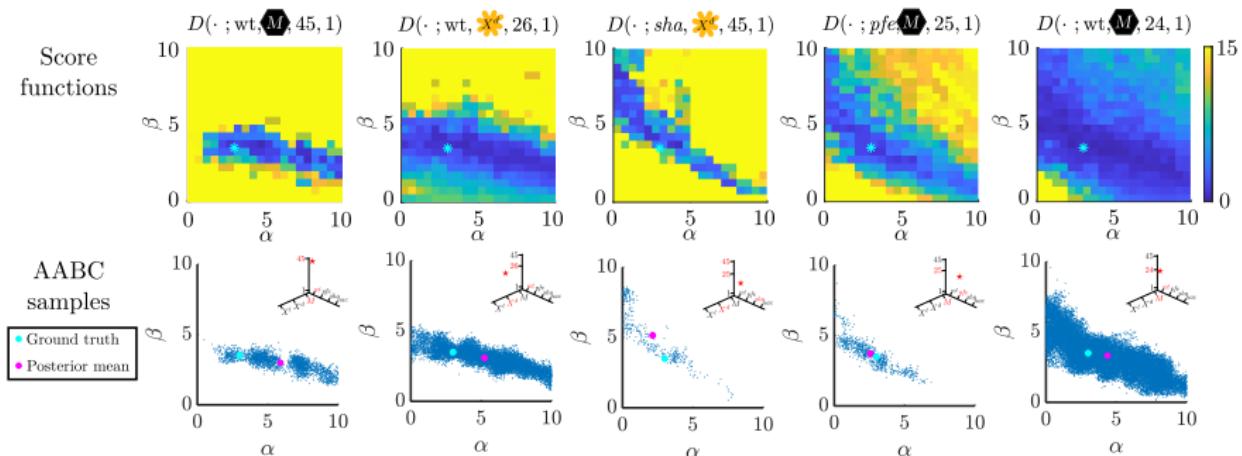
IV: Examining one particular score function

The score function captures qualitative characteristics



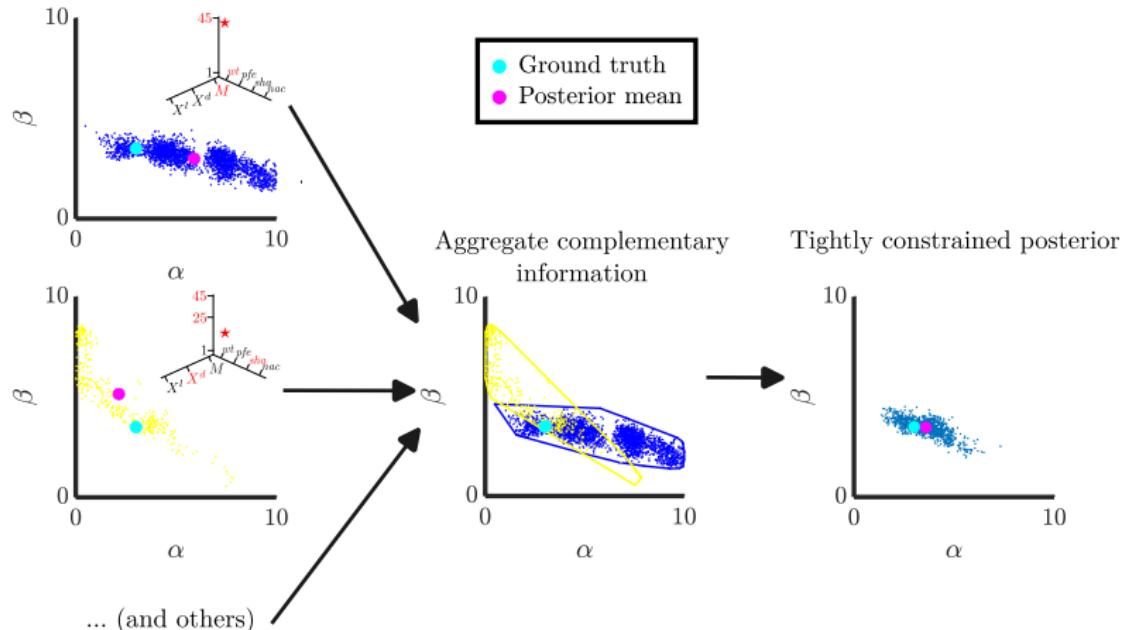
IV: Difference between score functions

No single score function is sufficiently informative to provide practical identifiability



IV: Combining score functions

Combination of score functions provides practical identifiability



Many ways to combining multiple slices of information, but in this case the result is similar

V: Inference results for poorly-understood parameters

I^d and ∇^d can transition to each other if:

$\nabla^d \rightarrow I^d$: $\#_{90} M < c$ and $[\#_{\Omega} X^d < d \text{ or } \#_{75} X^d > e]$

$I^d \rightarrow \nabla^d$: $\#_{90} M > f$ or $[\#_{\Omega} X^d > g \text{ and } \#_{75} X^d < h]$

Parameters: c, d, e, f, g, h

Biological question:

Are all six of these interactions necessary to produce observed patterns?

V: Approaches for combining information

How to combine the information encoded in each individual score function $D^{(i)}(\theta)$?

Approach 1: Weighted sum: accept θ if

$$\sum_i w_i D^{(i)}(\theta) < \delta$$

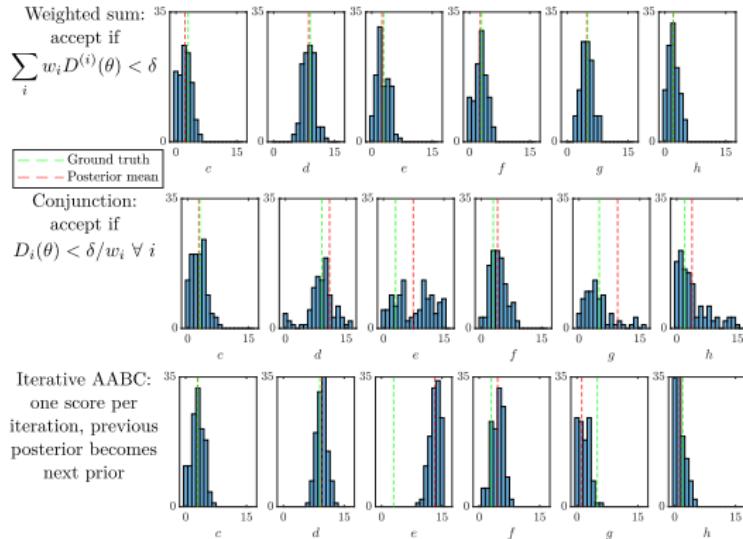
Approach 2: Conjunction: accept θ if

$$D^{(i)}(\theta) < \delta/w_i \quad \forall i$$

Approach 3: Iterative AABC: Multiple rounds of inference with updated prior

V: Combining information

Different approaches for combining information lead to different outcome

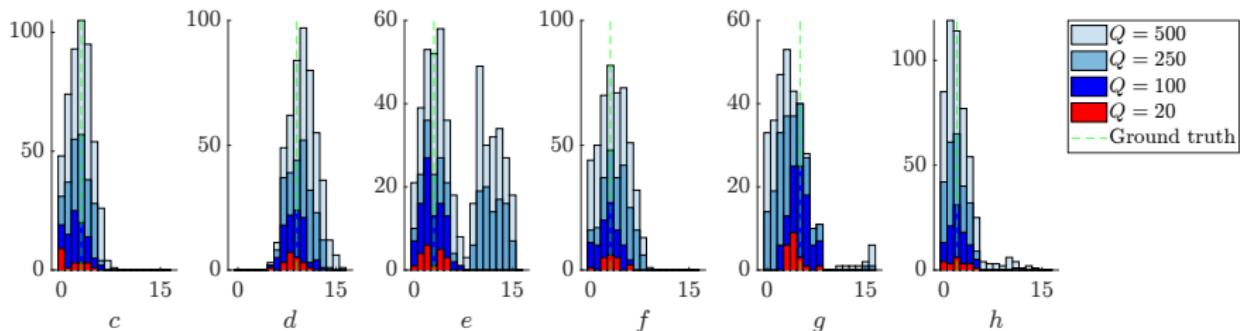


Apparently identifiable: c, d, f, h ; Apparently non-identifiable: e, g
So which one is right?

Answer: posterior predictive check

V: Hyperparameter tuning for δ

Posterior obtained using weighted sum, varying δ :



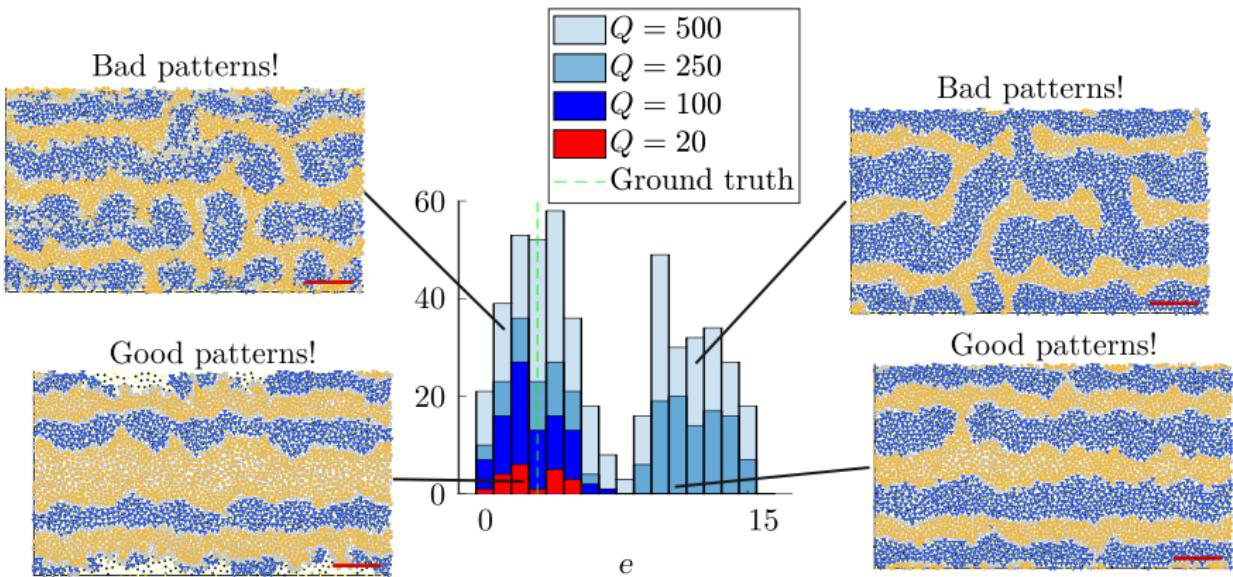
Q = quota for number of samples to accept (out of 10^6).

Larger $Q \Leftrightarrow$ larger δ

Substantiate difference in posterior as δ changes!

Difference in posterior outcomes can be explained by hyperparameter tuning

V: Posterior predictive check



Q : number of parameter samples to accept

$Q = 20, 100$: rejected too many good parameters

$Q = 500$: accepted too many bad parameters

$Q = 250$: just right

V: Biological insight

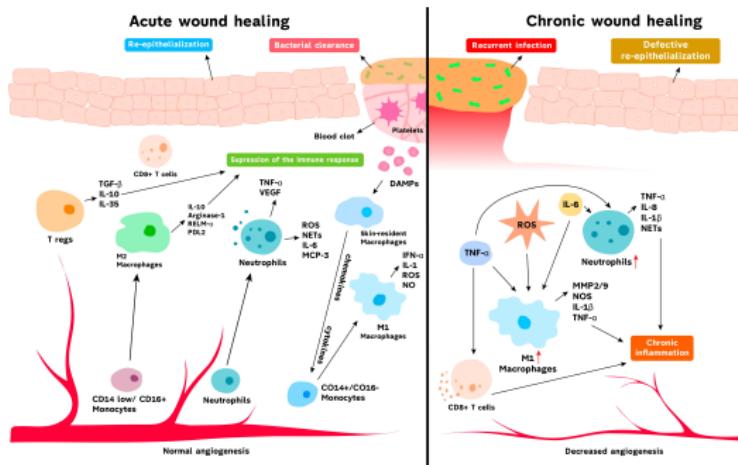
- Bimodal posterior distribution \Rightarrow non-identifiable parameters
- There exist parameter sets with very high values of e and g , effectively turning off the corresponding rules, but still capable of reproducing data \Rightarrow alternative mechanistic hypothesis
- Consequence of redundancy in cell interaction rules
- Robustness of pattern formation
- We inferred not only parameter values, but also the interaction rules themselves

$$\begin{array}{l} \textcolor{blue}{\triangledown}^l \rightarrow \textcolor{gray}{l^d} : \#_{90} M < c \text{ and } [\#_{\Omega} \textcolor{yellow}{x^d} < d \text{ or } \cancel{\#_{75} \textcolor{yellow}{x^d} > e}] \\ \textcolor{gray}{l^d} \rightarrow \textcolor{blue}{\triangledown}^l : \#_{90} M > f \text{ or } [\#_{\Omega} \textcolor{yellow}{x^d} > g \text{ and } \cancel{\#_{75} \textcolor{yellow}{x^d} < h}] \end{array}$$

- Parameter inference for ABMs is important, but challenging
- Developed analysis pipeline with TDA+AABC, computationally tractable, readily generalisable to wide class of spatial ABMs
- Many choices and hyperparameter in the pipeline, effects to be studied in future work:
 - Choice of filtration for TDA
 - Methods for vectorising persistence homology
 - Sampling approaches for AABC
 - Methods for combining score functions
 - Hyperparameter tuning for weights and δ
- Sweeping Plane Filtration or Pair Correlation Functions as alternatives to Vietoris-Rips

VI: Further application: data-driven models of wound healing

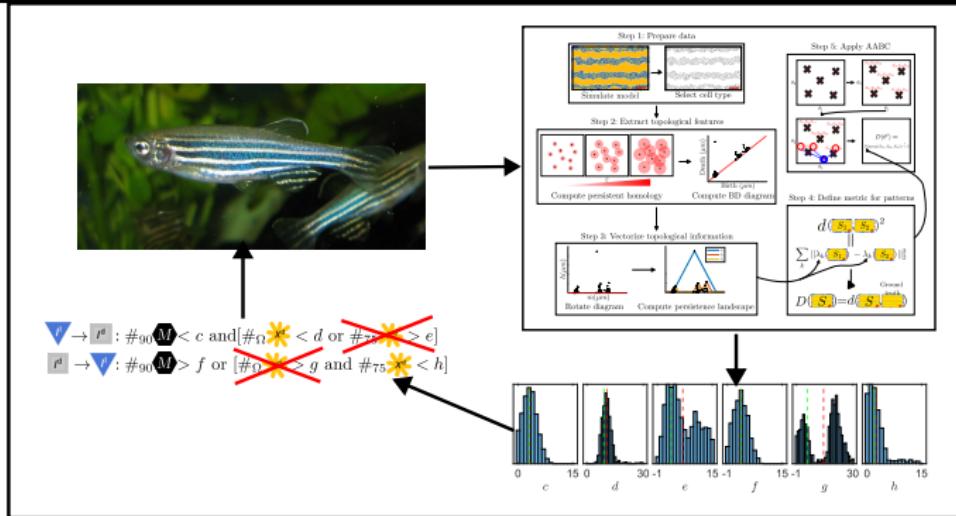
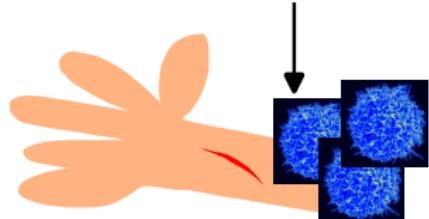
Modelling wound healing and associated immune response requires a multi-scaled approach combining PDEs and ABMs.



Raziyeva et al, 2021. Immunology of Acute and Chronic Wound Healing. *Biomolecules* 11(5)

Studying such model requires inference and identifiability analysis, enabling optimal therapy design via control theory and machine learning.

VI: Summary and outlook

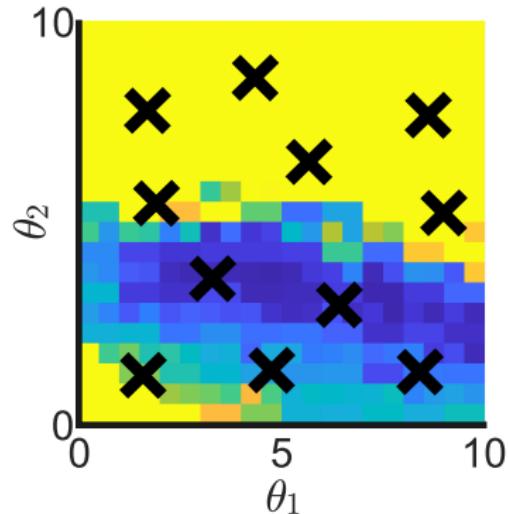


Thank you!

II: Rejection sampling

Suppose we have the likelihood function, rejection sampling (von Neumann 1940s) is a classic method for inference.

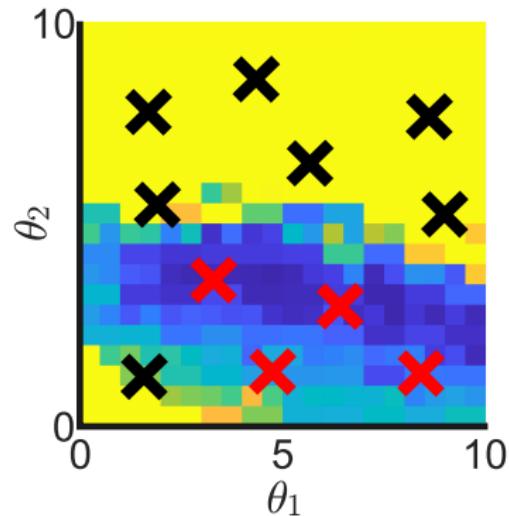
First, generate *proposals* (\mathbf{X}) by sampling from the prior



Darker colour \sim higher likelihood

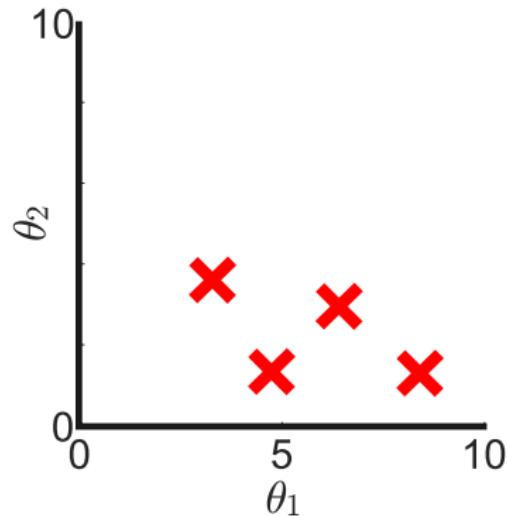
II: Rejection sampling

Next, evaluate the likelihood at each proposal, and accept if it is sufficiently high, reject otherwise



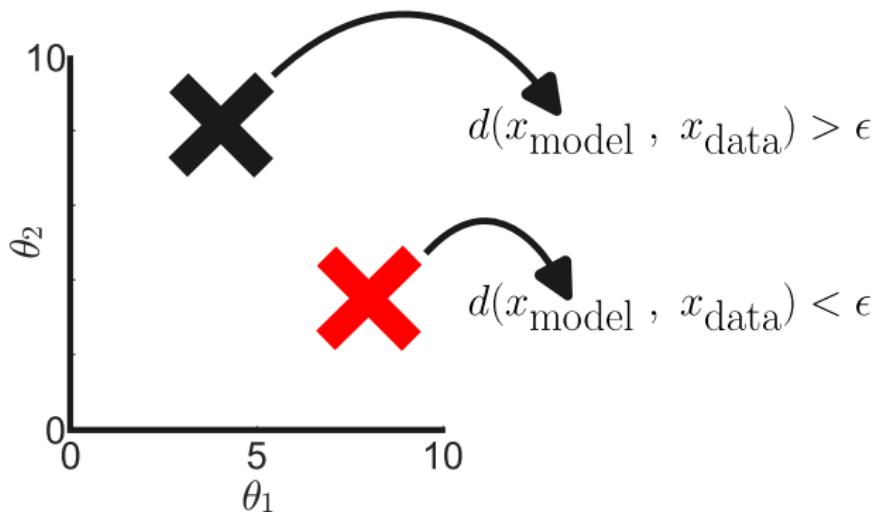
II: Rejection sampling

Repeat many times \rightarrow voila! we obtained a sample from the posterior



II: ABC + rejection sampling

Approximate Bayesian Computation (Rubin 1984, Pritchard et al 1999): evaluating the likelihood is expensive, so use a *likelihood-free* acceptance criterion:

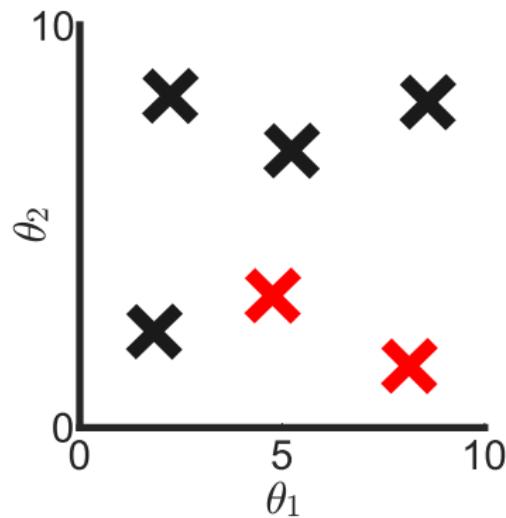


Defining this $d(\cdot, \cdot)$ is another challenge

II: AABC + rejection sampling

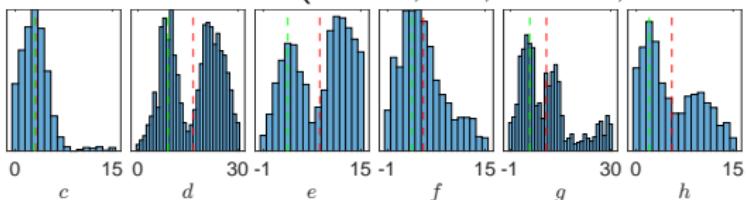
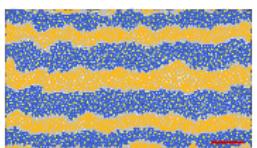
ABC is still expensive from running too many simulations → approximate again!

We first simulate the model for a small number of proposals (**X**)

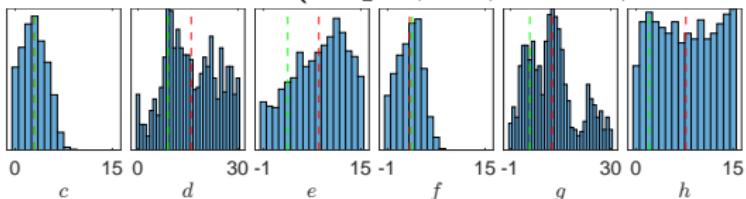
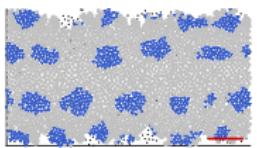


V: Examining score functions individually

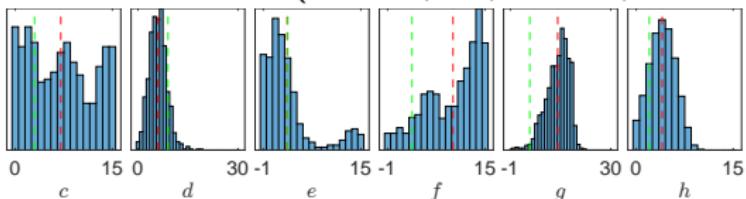
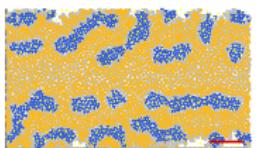
$D(\cdot; \text{wt}, \mathbb{M}, t = 45, \text{dim} = 1)$



$D(\cdot; \text{pfe}, \mathbb{M}, t = 40, \text{dim} = 0)$

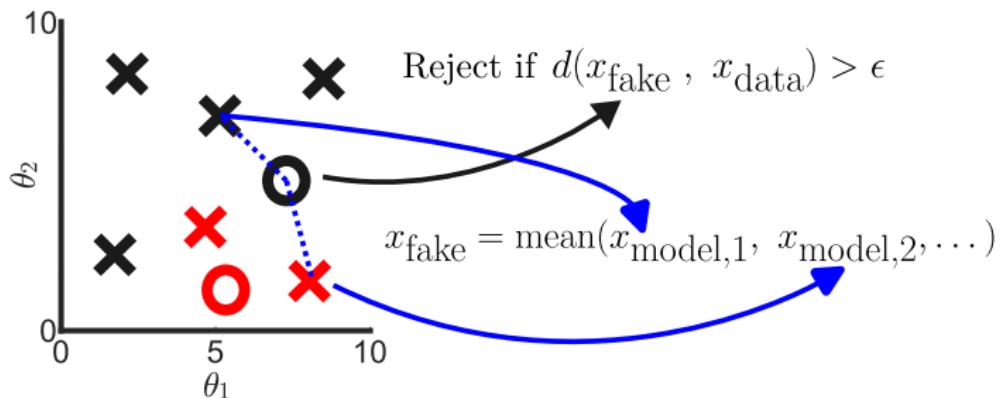


$D(\cdot; \text{nac}, \text{X}^d, t = 45, \text{dim} = 1)$



II: AABC + rejection sampling

Then, for a much larger number of proposals, (**O**), we aggregate the model output from neighbouring **X**s to stand-in as its output



The neighbours are chosen with some degree of randomness.

Buzbas & Rosenberg (2015) proved AABC converges to ABC as $\#\mathbf{X} \rightarrow \infty$

Appendix: AABC algorithm

Algorithm AABC for the zebrafish model with persistence landscape-based metrics

1. Obtain the pre-proposals independently from the prior: $\theta_j^* \sim P(\theta)$, $j = 1, \dots, m$.
2. For each θ_j^* , simulate the model s times with different random seed: $\mathbf{x}_{j,k}^* \sim f(\theta_j^*)$, $j = 1, \dots, m$, $k = 1, \dots, s$, and compute their corresponding persistence landscapes
3. For each further proposal θ' :
 - 3.1 Compute the distances $d_p(\theta', \theta_j^*)$, and denote $\theta^{*(j)}$ as the pre-sample with j^{th} lowest distance from θ .
 - 3.2 Compute weights ω_j for selecting neighbouring parameter sets according to the Epanechnikov kernel:

$$\omega_j = \frac{3}{4} \frac{1}{d_p(\theta', \theta^{*(s+1)})} \left[1 - \left(\frac{d_p(\theta', \theta_j^*)}{d_p(\theta', \theta^{*(s+1)})} \right)^2 \right], j = 1, \dots, m.$$

- 3.3 Sample ϕ according to the Dirichlet distribution with weight ω :

$$P(\phi|\omega) \propto \prod_{j=1}^m \phi_j^{\omega_j - 1}.$$

Here ϕ is a vector of non-negative weights, where ϕ_j is the weight of selecting the j^{th} pre-proposal as the neighbour

- 3.4 Sample s indices $\{i_1, \dots, i_s\}$ from $\{1, \dots, m\}$ with weights ϕ , and construct a set of s surrogate model output, $\{\mathbf{x}_k | k = 1, \dots, s\}$:

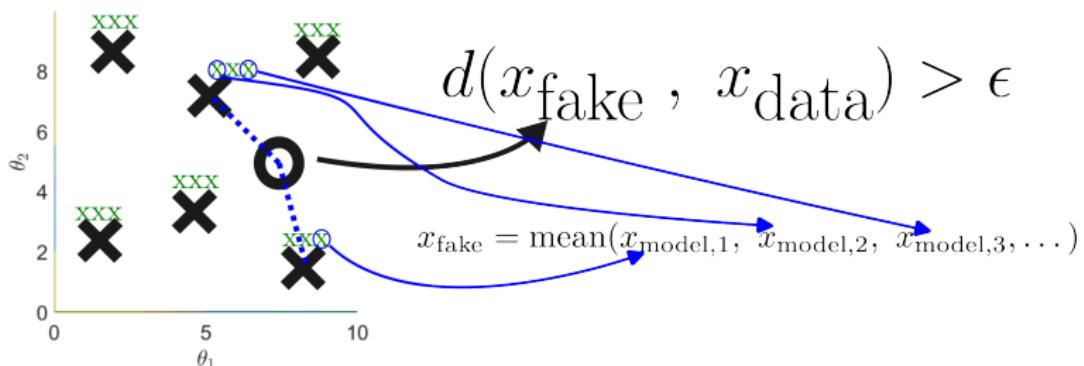
$$\mathbf{x}_k = \mathbf{x}_{i_k, \eta_k}^*, \text{ where } \eta_k \sim \text{Unif}\{1, \dots, s\},$$

and aggregate the corresponding persistence landscapes or surfaces

- 3.5 Compute the chosen score function $D(\theta')$ using the aggregated persistence landscapes or surfaces, and accept θ' if $D(\theta') < \delta$

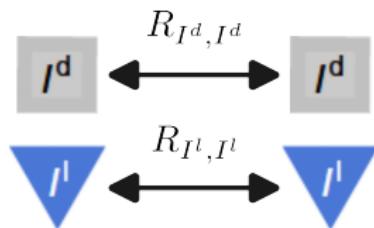
AABC + rejection sampling

Technicality: each sample actually has multiple simulations to take model stochasticity into account



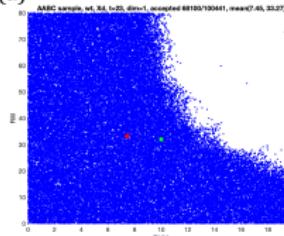
Parameters for movement

I^d and I^l repel cells of the same kind with strength $R_{I^d, I^d}, R_{I^l, I^l}$, respectively

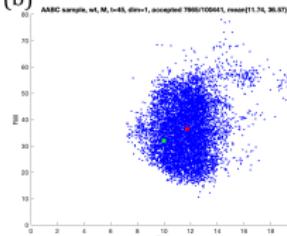


The story is the same

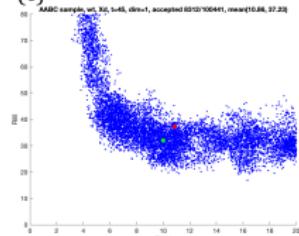
(a)



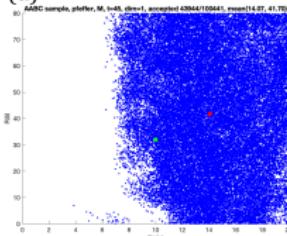
(b)



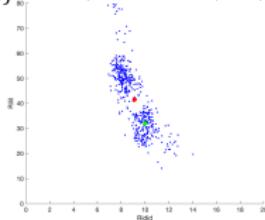
(c)



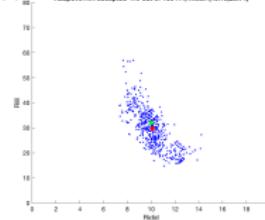
(d)



(e) UniformThr: accepted 502 out of 100441, mean (9.12,41.53)



(f) AdaptiveThr: accepted 479 out of 100441, mean (10.19,29.74)



(g) Weightedsum: accepted 502 out of 100441, mean (9.53,29.31)

