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I: My journey in mathematical biology

Overarching theme:
Biological patterns
PDE models → Agent-based models (ABMs)
Conceptual modelling → Data-driven approaches
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I: My research program
Past:

PDE models in signalling proteins regulating cell motility
Diffusion-driven (Turing) instability in pattern formation
Inference and identifiability of PDE models

Current:
Bayesian inference for ABM of cell-cell interaction and pattern
formation with topological data analysis
Machine learning-based dynamics discovery for cell movement
during development
Patterns in network models of opinion dynamics (undergrad
mentorship)

Future:
Combining PDE and ABM to build multi-scale model of immune
response and wound healing
Optimal therapy design with machine learning and control
theory 3



I: Biological patterns are ubiquitous and fascinating

Epithelial Cells: Kozyrska et al, Science, 2022; Starlings: Baxter, Wikipedia, 2008;

Zebrafish: Azul, Wikipedia, 2005; Fern: Auer,1853. 4



I: Turing’s PDE models
Diffusion-driven instability was proposed by Turing (1952) as a
possible driving mechanism behind many biological patterns

∂u(x, t)
∂t = ∇ · (Du∇u) + f(u, v),

∂v(x, t)
∂t = ε2∇ · (Dv∇u) + g(u, v), x ∈ Ω ⊆ Rn, t > 0

u(x,0) = u0(x), v(x,0) = v0(x,0), ∂nu = ∂nv = 0 on ∂Ω

Many fascinating properties, but little evidence in biology

Liu, Maini, Baker, 2022. Control
of diffusion-driven pattern
formation behind a wave of
competency. Physica D 438
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I: Inference and Parameter identifiability
(Practical) Parameter identifiability: the ability to accurately infer
values of model parameters with given data
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I: Data-driven PDE models of patterning

Liu, Suh, Maini, Cohen, Baker, 2024. Parameter identifiability and
model selection for partial differential equation models of cell
invasion. J R Soc Interface 21(212)
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I: Experiment design

Liu, Maini, Baker, 2025. Optimal experiment design for practical
parameter identifiability and model discrimination. arXiv:2506.11311
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I: Pattern formation on zebrafish skin

Zebrafish photo: Azul, Wikipedia, 2005
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I: The zebrafish ABM

Fish and in vivo pictures: Frohnhöfer et al, Development, 2013. Model by Volkening & Sandstede, 2018
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I: What are agent-based models (ABMs)?
ABM: A collection of autonomous agents, and rules governing their
interactions.
Example: Newtonian n−body problem

d2xi
dt2 =

∑
j 6=i

−G
mimj

|xi − xj |2
x̂i − xj

11



I: The zebrafish model is more complex

Figure adapted from Volkening & Sandstede, Nat. Comm., 2018
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I: Parameter identifiability
Practical parameter identifiability: a quantification of uncertainty
in parameter estimates with respect to data quality and quantity
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I: The central aim
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Talk outline

I Background and motivation
II Bayesian Inference
III Topological data analysis
IV Inference result for the zebrafish model
V Future work
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II: Bayesian parameter inference

P(θ|xdata)︸ ︷︷ ︸
posterior

∝ P(xdata|θ)︸ ︷︷ ︸
likelihood

P(θ)︸︷︷︸
prior

Goal: Obtain the posterior distribution of parameter values by
(approximately) sampling from it
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II: From rejection sampling to AABC

Problem: how to define d( · , · ) and choose appropriate δ?
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Talk outline

I Background and motivation
II Bayesian Inference
III Topological data analysis
IV Inference result for the zebrafish model
V Future work
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III: How to compare patterns?

Pixel-wise comparison does not respect the qualitative “essence" of
patterns

Common approaches for comparing spatial data:
Pair correlation functions
Summary statistics
Topological data analysis: good for summarising
topological/geometric information
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III: Persistent homology

Step 1: Compute persistent homology
(we use the Vietoris–Rips filtration)
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III: Persistent homology
Step 2: Pick a dimension (usually 0 or 1), compute barcodes and
birth-death diagrams

But directly comparing barcodes from different patterns is difficult
→ persistence landscape
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III: Persistence landscape

Step 3a: Rotate birth-death diagrams by π/4
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III: Persistence landscape

Step 3b: Draw triangular “mountains"

Persistence landscape is the collection of envelopes defined by the
“mountains", {λk}∞k=1
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III: Metric for comparing patterns
Persistence landscape offers a robust way to compare spatial data
(Bubenik 2015, 2020), and consequently define score function for
parameter values

dland(pat1, pat2)
2 =

∞∑
k=1

dL2

(
λ
(1)
k , λ

(2)
k

)2

D(θ) = dland(pat(θ),patdata), patdata is synthetic
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III: The TDA pipeline
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III: Choices in building a score function
Any choice of

Fish type (wild-type, pfeffer, nacre, shady),
Cell type (M,Xd ,X l , Id , Il),
time t = 1, . . . , 44,45,
Topological dimension (0 or 1),

yields a distinct distance function D((α, β);fish, cell, t,dim):

We can either use one such D individually, or combine them
somehow (more on this later)
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III: The entire pipeline
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IV: Demonstration of methods on well-understood parameters

A new at random location z may appear if

#Ω +#Ω > α+ β #Ω

Parameters: α, β
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IV: Recall the choices
Any choice of

Fish type (wild-type, pfeffer, nacre, shady),
Cell type (M,Xd ,X l , Id , Il),
time t = 1, . . . , 44,45,
Topological dimension (0 or 1),

yields a distinct distance function D((α, β);fish, cell, t,dim):
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IV: Examining one particular score function
The score function captures qualitative characteristics
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IV: Difference between score functions

No single score function is sufficiently informative to provide
practical identifiability
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IV: Combining score functions
Combination of score functions provides practical identifiability

Many ways to combining multiple slices of information, but in this
case the result is similar 33



V: Inference results for poorly-understood parameters

and can transition to each other if:

Parameters: c,d,e, f ,g,h

Biological question:
Are all six of these interactions necessary to produce observed
patterns?
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V: Approaches for combining information

How to combine the information encoded in each individual score
function D(i)(θ)?
Approach 1: Weighted sum: accept θ if∑

i
wiD(i)(θ) < δ

Approach 2: Conjunction: accept θ if

D(i)(θ) < δ/wi ∀ i

Approach 3: Iterative AABC: Multiple rounds of inference with
updated prior
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V: Combining information
Different approaches for combining information lead to different
outcome

Apparently identifiable: c,d, f ,h; Apparently non-identifiable: e,g
So which one is right?
Answer: posterior predictive check 36



V: Hyperparameter tuning for δ

Posterior obtained using weighted sum, varying δ:
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Q = quota for number of samples to accept (out of 106).
Larger Q ⇔ larger δ
Substantiate difference in posterior as δ changes!
Difference in posterior outcomes can be explained by
hyperparameter tuning
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V: Posterior predictive check

Q : number of parameter samples to accept
Q = 20,100 : rejected too many good parameters
Q = 500 : accepted too many bad parameters
Q = 250 : just right
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V: Biological insight

Bimodal posterior distribution⇒ non-identifiable parameters
There exist parameter sets with very high values of e and g,
effectively turning off the corresponding rules, but still capable
of reproducing data ⇒ alternative mechanistic hypothesis
Consequence of redundancy in cell interaction rules
Robustness of pattern formation
We inferred not only parameter values,
but also the interaction rules themselves
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VI: Future directions

Parameter inference for ABMs is important, but challenging
Developed analysis pipeline with TDA+AABC, computationally
tractable, readily generalisable to wide class of spatial ABMs
Many choices and hyperparameter in the pipeline, effects to be
studied in future work:

Choice of filtration for TDA
Methods for vectorising persistence homology
Sampling approaches for AABC
Methods for combining score functions
Hyperparameter tuning for weights and δ

Sweeping Plane Filtration or Pair Correlation Functions as
alternatives to Vietoris-Rips
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VI: Further application: data-driven models of wound healing
Modelling wound healing and associated immune response
requires a multi-scaled approach combining PDEs and ABMs.

Raziyeva et al, 2021. Immunology of Acute and Chronic Wound Healing. Biomolecules 11(5)

Studying such model requires inference and and identifiability
analysis, enabling optimal therapy design via control theory and
machine learning. 41



VI: Summary and outlook

Thank you!
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II: Rejection sampling
Suppose we have the likelihood function, rejection sampling (von
Neumann 1940s) is a classic method for inference.
First, generate proposals (X) by sampling from the prior

Darker colour ∼ higher likelihood
43



II: Rejection sampling

Next, evaluate the likelihood at each proposal, and accept if it is
sufficiently high, reject otherwise
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II: Rejection sampling

Repeat many times → voila! we obtained a sample from the
posterior
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II: ABC + rejection sampling
Approximate Bayesian Computation (Rubin 1984, Pritchard et al
1999): evaluating the likelihood is expensive, so use a
likelihood-free acceptance criterion:

Defining this d(· , ·) is another challenge
46



II: AABC + rejection sampling

ABC is still expensive from running too many simulations →
approximate again!
We first simulate the model for a small number of proposals (X)
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V: Examining score functions individually

D( · ;wt, , t = 45, dim = 1)

0 15
c

0 30
d

-1 15
e

-1 15
f

-1 30
g

0 15
h

D( · ;pfe, , t = 40,dim = 0)

0 15
c

0 30
d

-1 15
e

-1 15
f

-1 30
g

0 15
h

D( · ;nac, , t = 45,dim = 1)

0 15
c

0 30
d

-1 15
e

-1 15
f

-1 30
g

0 15
h

48



II: AABC + rejection sampling

Then, for a much larger number of proposals, (O), we aggregate
the model output from neighbouring Xs to stand-in as its output

The neighbours are chosen with some degree of randomness.
Buzbas & Rosenberg (2015) proved AABC converges to ABC as
#X → ∞
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Appendix: AABC algorithm

Algorithm AABC for the zebrafish model with persistence landscape-based metrics
1. Obtain the pre-proposals independently from the prior: θ∗

j ∼ P(θ), j = 1, . . . ,m.
2. For each θ∗

j , simulate the model s times with different random seed:
x∗

j,k ∼ f(θ∗), j = 1, . . . ,m, k = 1, . . . , s, and compute their corresponding persistence landscapes
3. For each further proposal θ′:

3.1 Compute the distances dp(θ
′,θ∗

j ), and denote θ∗(j) as the pre-sample with j th lowest distance from θ.
3.2 Compute weights ωj for selecting neighbouring parameter sets according to the Epanechnikov kernel:

ωj =
3
4

1
dp(θ

′,θ∗(s+1))

1 −

(
dp(θ

′,θ∗
j )

dp(θ
′,θ∗(s+1))

)2
 , j = 1, . . . ,m .

3.3 Sample φ according to the Dirichlet distribution with weight ω:

P(φ|ω) ∝
m∏

j=1
φ
ωj−1
j .

Here φ is a vector of non-negative weights, where φj is the weight of selecting the j th pre-proposal as
the neighbour

3.4 Sample s indices {i1, . . . , is} from {1, . . . ,m} with weights φ, and construct a set of s surrogate model
output, {xk |k = 1, . . . , s}:

xk = x∗
ik ,ηk

, where ηk ∼ Unif{1, . . . , s},

and aggregate the corresponding persistence landscapes or surfaces
3.5 Compute the chosen score function D(θ′) using the aggregated persistence landscapes or surfaces,

and accept θ′ if D(θ′) < δ
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AABC + rejection sampling

Technicality: each sample actually has multiple simulations to take
model stochasticity into account
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Parameters for movement

and repel cells of the same kind with strength RId ,Id ,RIl ,Il ,
respectively
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The story is the same
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