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I: My journey in mathematical biology
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Data-driven approach

Conceptual PDE modelling Data-driven PDE modelling agent-based mod

Overarching theme:
m Biological patterns
m PDE models — Agent-based models (ABMs)
m Conceptual modelling — Data-driven approaches



I: My research program

Past:
m PDE models in signalling proteins regulating cell motility
m Diffusion-driven (Turing) instability in pattern formation
m Inference and identifiability of PDE models
Current:
m Bayesian inference for ABM of cell-cell interaction and pattern
formation with topological data analysis
m Machine learning-based dynamics discovery for cell movement
during development
m Patterns in network models of opinion dynamics (undergrad
mentorship)
Future:
m Combining PDE and ABM to build multi-scale model of immune
response and wound healing
m Optimal therapy design with machine learning and control
theory 3



I: Biological patterns are ubiquitous and fascinating

Epithelial Cells: Kozyrska et al, Science, 2022; Starlings: Baxter, Wikipedia, 2008;

Zebrafish: Azul, Wikipedia, 2005; Fern: Auer,1853. 4



I: Turing’s PDE models

Diffusion-driven instability was proposed by Turing (1952) as a
possible driving mechanism behind many biological patterns
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u(x,0) = up(x), v(x,0) = vo(x,0), Ot = 9pv = 0 on 0N
Many fascinating properties, but little evidence in biology
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I: Inference and Parameter identifiability

(Practical) Parameter identifiability: the ability to accurately infer
values of model parameters with given data
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I: Data-driven PDE models of patterning

Data

+ How to select a model?

» What factors impact parameter
identifiability?

* How to optimally design
experiment to enhance
parameter identifiability?

ac Parameter estimates
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o -~ T~ and
Model 1 profile likelihood
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Liu, Suh, Maini, Cohen, Baker, 2024. Parameter identifiability and
model selection for partial differential equation models of cell
invasion. J R Soc Interface 21(212)



I: Experiment design

Model
dx
= = I@t0)

Data from naively

designed experiment
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Liu, Maini, Baker, 2025. Optimal experiment design for practical
parameter identifiability and model discrimination. arXiv:2506.11311



I: Pattern formation on zebrafish skin

zebrafish

D

SUBJECT REVIEWS 3
Zebrafish as a Cancer Model @3
Harma Feitsma; Edwin Cuppen

W) Check for updates The zebrafish: a new model organism for integrative
+ Author & Article Information physiology

MoJ Cancer Res (2008) 6 (5): 685-694.

Josephine P. Briggs
01]A

Studies of Turing pattern formation in
zebrafish skin

rg/10.115

Shigeru Kondo ], Masakatsu Watanabe and Seita Miyazawa
Published: 08 November 2021 https://doi.org/101098/rsta.2020.0274

Zebrafish photo: Azul, Wikipedia, 2005



I: The zebrafish ABM

Wildtype
Cell types: ve

In vivo:
ETEE i g =
In silico:
W 5 T

Dense xanthophore

Dense iridophore

Loose xanthophore
WV Loose iridophore
@ Melanophore

Variations due to
random effects:

Fish and in vivo pictures: Frohnhéfer et al, Development, 2013. Model by Volkening & Sandstede, 2018



I: What are agent-based models (ABMs)?

ABM: A collection of autonomous agents, and rules governing their
interactions.

Example: Newtonian n—body problem




I: The zebrafish model is more complex

Dense xanthophore P xd
Dense iridophore (
Loose xanthophore

"W Loose iridophore A Q
' Melanophore f\’/ X

—| Short-range inhibition
—| Long-range inhibition
- Short-range promotion

- Long-range promotion Long range:
210-250 um

@ xxx w Yy

Cell type transition rule example:

W— I i
#uum< cand [#o X« < dor #sXE> ¢]
(poorly understood)

Cell differentiation rule example:
& —@atzif

8> o+ r#szQ

(better understood)

Figure adapted from Volkening & Sandstede, Nat. Comm., 2018

Movement rule example: . X,
iX; /
X yr,

i

dt

X,
) 1 1 ro — ||7! r
Fij =Ry, [E + 3 tanh <% m

(well understood)




I: Parameter identifiability

Practical parameter identifiability: a quantification of uncertainty
in parameter estimates with respect to data quality and quantity

Model

Parameter estimates

Pyactically
Identifiallle

Inference
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I: The central aim

Mathematical challenge:
How to perform parameter inference
and identifiability analysis for such a
complex, stochastic, model?

Biological question:
Does there exist alternative rulesets
capable of reproducing the patterns?

A
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Challenge 1: Intractable likelihood,
expensive simulations

Challenge 2: No straight-forward
way to compare patterns

[ e

L(0) = Plaonlf) =]

Robust, computationally
fficient inference pipelin




Talk outline

I Background and motivation
Il Bayesian Inference
Il Topological data analysis
IV Inference result for the zebrafish model
V Future work



Il: Bayesian parameter inference

P(eyxdata) O(P(Xdataw) P(G)
——

posterior likelihood prior

Goal: Obtain the posterior distribution of parameter values by
(approximately) sampling from it

Likelihood
(hard to compute)
8 Posterior sample
6
- 8
A \
6
2 ‘ )
4
0
0 5 10 2
0,
0
Prior 0 i 10
(easy to compute) .




ll: From rejection sampling to AABC

Rejection sampling

Approximate Bayesian
Computation (ABC)

Approximate Approximate
Bayesian Computation (AABC)

10 x 10 10,
x %% "x X x X x
$ X e X X e X 47 "%
X % X x
. X X X X %X X X
0 5 10 % 5 10 % 5 10
61 01 01
L) > 6 d(f(6), data) < 5 A(f (Bucighbour). dati) < 5
Higher accuracy g » Lower accuracy

More expensive

¥ Computationally cheaper

Problem: how to define d( -, - ) and choose appropriate §?




Talk outline

I Background and motivation
Il Bayesian Inference
lll Topological data analysis
IV Inference result for the zebrafish model
V Future work



lll: How to compare patterns?

Pixel-wise comparison does not respect the qualitative “essence"” of
patterns

Common approaches for comparing spatial data:
m Pair correlation functions
m Summary statistics

m Topological data analysis: good for summarising
topological/geometric information



lll: Persistent homology

Step 1: Compute persistent homology
(we use the Vietoris—Rips filtration)

Point-cloud data Persistent hom@

Dimension 0 features:

Dimension 1 features: loops
connected components

20



lll: Persistent homology

Step 2: Pick a dimension (usually 0 or 1), compute barcodes and
birth-death diagrams

AT

.

Barcodes

Persistent homology

;;))_4'

= birth(um)
Birth—dcath”diagram

But directly comparing barcodes from different patterns is difficult

— persistence landscape
21



lll: Persistence landscape

Step 3a: Rotate birth-death diagrams by 7 /4

h(pm)

L

birth(pm) m(pm)
Birth-death diagram Rotated udiagram

22



lll: Persistence landscape

Step 3b: Draw triangular “mountains”

B £
= —» =
< <
m( ,u.r‘n) A m( u“m )
Persistence landscape

Rotated diagram
Persistence landscape is the collection of envelopes defined by the

“mountains”, { A},

23



lll: Metric for comparing patterns

Persistence landscape offers a robust way to compare spatial data
(Bubenik 2015, 2020), and consequently define score function for
parameter values

pat; paty
/\(U} {/\ 2)}
‘ /\ - ‘

g 2
Ghand(paty, paty)® = Z d2 </\/(<1)’ >‘I(<2))
k=1

D(0) = Glana(pat(0), patgas), DPatyacs IS Synthetic

24



lll: The TDA pipeline

Pattern

Select cell type

D ¢ e —
- ~
< 0 200 400 600
€ (um)
Barcodes
]

Birth-death diagram

Rotate diagram

=

—IAA

Comparison of patterns

Persistence landscape

25



lll: Choices in building a score function

Any choice of
m Fish type (wild-type, pfeffer, nacre, shady),
m Cell type (M, X9, X! 19,1,
mtimet=1,...,44 45,
m Topological dimension (0 or 1),
yields a distinct distance function D((«, 3); fish, cell, t, dim):

We can either use one such D individually, or combine them

somehow (more on this later)
26



lll: The entire pipeline

Step 1: Prepare data

Step 5: Apply AABC

mulate model

Select cell 1)'];0

Step 2: Extract topological features

Compute persistent homology

Birth (um)
Compute BD diagram

%
4

x| |% %

®| | % %
*

N

al output:
Posterior distribution

and
parameter estimates

Step 3: Vectorize topological information

h(pm)

-|

i S

m(um)
Rotate diagram

Compute persistence landscape

Ground
truth

27



Talk outline

I Background and motivation
Il Bayesian Inference
Il Topological data analysis
IV Inference result for the zebrafish model
V Future work
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IV: Demonstration of methods on well-understood parameters

A new @ at random location z may appear if

HoX + H#ol > a+p #Q@

0% o 0 0 _ o9,
e® o0 *%o
AR X!

Parameters: «, 5

29



1V: Recall the choices

Any choice of
m Fish type (wild-type, pfeffer, nacre, shady),
m Cell type (M, X9, X!, 19,1,
mtimet=1,...,44 45,
m Topological dimension (0 or 1),
yields a distinct distance function D((«, 3); fish, cell, t, dim):

D((«, B); wt, M, t = 45,dim = 0)
10 m1s

n‘n
o 1

0 ,\ o
D((c, B); wt, M,t = 45,dim =1)
10 050

30



IV: Examining one particular score function

The score function captures qualitative characteristics

Ground truth

[Data source, t

0 o 10
D((a, B); wt 4, t = 45, dim = 1)

31



1V: Difference between score functions

No single score function is sufficiently informative to provide

practical identifiability

D(- ;w4 45,1) D(- ;wt, X£,26,1)  D(- ; sha, ¥¢,45,1) p/{@ 25,1)
Score 10 10 10
functions

10 ]
AABC /i\‘ 10 )\
samples
w5 5,
- 0
‘ ] 10 0 5 10
« « o «

(- s we b 24,1)

/L

0 5 10
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IV: Combining score functions

Combination of score functions provides practical identifiability

10
Ground truth
@ Posterior mean
0
0 10 Aggregate complementary Tightly constrained posterior
a information
10 5 10
) °
0
0

... (and others)

Many ways to combining multiple slices of information, but in this

case the result is similar "



V: Inference results for poorly-understood parameters

" and VCan transition to each other if:

W18 o< c and[#o ¥ < d or #rs 5 > ]
0 #oof> f or [#o x> g and #os ¥ < b

Parameters: c,d,e,f,g,h

Biological question:

Are all six of these interactions necessary to produce observed
patterns?



V: Approaches for combining information

How to combine the information encoded in each individual score
function D()(9)?
Approach 1: Weighted sum: accept ¢ if

> wiD"(6) < 6
i
Approach 2: Conjunction: accept ¢ if
D) < &/w; Vi

Approach 3: lterative AABC: Multiple rounds of inference with
updated prior

35



V: Combining information

Different approaches for combining information lead to different
outcome

Weighted sum:

accept if { 0
> wiD(9) <8
) ) 0 0 0 )
; o B e % B 0 B s B le &
o ' c d e f g h

Conjunction:

accept if

Dy(0) < 6/ws ¥ i ﬂﬂ
N ol I”l‘ﬂ.l. ,‘m]ﬂlﬂ“ﬂﬂ]f \,ﬂﬂm]ﬂx_ 0

15 0 15 0

Iterative AABC: #

one score per
iteration, previous
posterior becomes
next prior
0 o ! I o

0
50 50 15 0 50 50

Apparently identifiable: ¢, d, f, h; Apparently non-identifiable: e, g
So which one is right?

Answer: posterior predictive check a6



V: Hyperparameter tuning for o

Posterior obtained using weighted sum, varying d:

100 100 60 100 60

T 1Q = 500
Q=250
O =100
Q=20

Ground truth

40 40

Q = quota for number of samples to accept (out of 10°).
Larger Q < larger §

Substantiate difference in posterior as § changes!
Difference in posterior outcomes can be explained by
hyperparameter tuning

37



V: Posterior predictive check

Bad patterns!

[ 1Q =500
[1Q = 250
EOQ =100
O =20

Ground truth

e

: number of parameter samples to accept
= 20, 100 : rejected too many good parameters

250 : just right

Q
Q
Q = 500 : accepted too many bad parameters
Q

38



V: Biological insight

m Bimodal posterior distribution=- non-identifiable parameters

m There exist parameter sets with very high values of e and g,
effectively turning off the corresponding rules, but still capable
of reproducing data = alternative mechanistic hypothesis

m Consequence of redundancy in cell interaction rules
m Robustness of pattern formation

m We inferred not only parameter values,
but also the interaction rules themselves

V-l #00@< c and[#ox < d OYM

/a %v: #90@> f or M&nd Ho5xE < D

39



VI: Future directions

m Parameter inference for ABMs is important, but challenging

m Developed analysis pipeline with TDA+AABC, computationally
tractable, readily generalisable to wide class of spatial ABMs

m Many choices and hyperparameter in the pipeline, effects to be
studied in future work:
m Choice of filtration for TDA
m Methods for vectorising persistence homology
m Sampling approaches for AABC
m Methods for combining score functions
m Hyperparameter tuning for weights and §
m Sweeping Plane Filtration or Pair Correlation Functions as
alternatives to Vietoris-Rips

40



VI: Further application: data-driven models of wound healing

Modelling wound healing and associated immune response
requires a multi-scaled approach combining PDEs and ABMs.

Acute wound healing Chronic wound healing

Raziyeva et al, 2021. Immunology of Acute and Chronic Wound Healing. Biomolecules 11(5)

Studying such model requires inference and and identifiability
analysis, enabling optimal therapy design via control theory and
machine learning. 4



VI: Summary and outlook

il | e
. "( S — 3 ‘ D)
Vi =

Thank you!
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II: Rejection sampling

Suppose we have the likelihood function, rejection sampling (von
Neumann 1940s) is a classic method for inference.
First, generate proposals (X) by sampling from the prior

10

Darker colour ~ higher likelihood

43



II: Rejection sampling

Next, evaluate the likelihood at each proposal, and accept if it is
sufficiently high, reject otherwise

10

44



II: Rejection sampling

Repeat many times — voila! we obtained a sample from the
posterior

10
X x
X X
C0 5 10

45



Il: ABC + rejection sampling

Approximate Bayesian Computation (Rubin 1984, Pritchard et al
1999): evaluating the likelihood is expensive, so use a
likelihood-free acceptance criterion:

10 x/—\

d(xnlodcl ) xdata) > €

x d(xmodol ) x(la‘ta‘) <€

0 5 10
61

02

Defining this d(- , -) is another challenge
46



Il: AABC + rejection sampling

ABC is still expensive from running too many simulations —
approximate again!
We first simulate the model for a small number of proposals (X)

10

02
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V: Examining score functions individually

D(- ;wt,@,t:45,dim: 1)

48



Il: AABC + rejection sampling

Then, for a much larger number of proposals, (O), we aggregate
the model output from neighbouring Xs to stand |n as its output

10
x Reject if d( xﬁko data

0

)

Tfake = MeAN(Z)6de] 10 Limodel 2 - )

\_/'

10

smmox

The neighbours are chosen with some degree of randomness.
Buzbas & Rosenberg (2015) proved AABC converges to ABC as
#X — oo



Appendix: AABC algorithm

Algorithm AABC for the zebrafish model with persistence landscape-based metrics

1. Obtain the pre-proposals independently from the prior: 67 ~ P(8), j=1..... m.
2. For each 67, simulate the model s times with different random seed:
Jk ~ f(0* ) j=1,..., m k=1,..., ,§, and compute their corresponding persistence landscapes

3. For each further proposal 6”:

3.1 Compute the distances dj(6', 6;'), and denote 6*0) as the pre-sample with j lowest distance from 6.
3.2 Compute weights w; for selecting neighbouring parameter sets according to the Epanechnikov kernel:

2
1 dp(0',6;
“i :g rpr(s+1) 1= < pE ;(S/A)w) ) J=1,. m.
ap(6',6 ) dp(6', 6 )

3.3 Sample ¢ according to the Dirichlet distribution with weight w:

m
P(¢|w) x H ()/
j=1

Here ¢ is a vector of non-negative weights, where ¢ is the weight of selecting the j™ pre-proposal as
the neighbour
3.4 Sample s indices {is, ..., is} from {1,..., m} with weights ¢, and construct a set of s surrogate model
output, {xxlk=1,..., s}
Xy =X

i oner Where ny ~ Unif{1,..., s},

and aggregate the corresponding persistence landscapes or surfaces
3.5 Compute the chosen score function D(8") using the aggregated persistence landscapes or surfaces,
and accept 0" if D(6') < §

50



AABC + rejection sampling

Technicality: each sample actually has multiple simulations to take
model stochasticity into account

: X X d(Zfake » Tdata) > €

Tfake = mean(w nodel,1, model, 35 - - - )

Lmodel,25

51



Parameters for movement

© and ¥ repel cells of the same kind with strength Rya 1o, Ry i
respectively

R[d’[d
19— [
R]I,JI,

V—V

52



The story is the same

(O J— ...

(1) wotrossum aconpto sz aut ot 10041, mean 0 5929:1)

([P (3 T ———
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